The paper summarizes the state-of-the-art of the most recent advances in biological nitrogen removal, including process design criteria and technological innovations. With reference to the Modified Ludzck Ettinger (MLE) process (pre-denitrification and nitrification in the activated sludge process), the most common nitrogen removal process used nowadays, a new design equation for the denitrification reactor based on specific denitrification rate (SDNR) has been proposed. In addition, factors influencing SDNR (DO in the anoxic reactor; hydrodynamic behavior) are analyzed, and technological solutions are proposed. Concerning technological advances, the paper presents a summary of various “deammonification” processes, better known by their patent names like ANAMMOX®, DEMON®, CANON®, ANITA® and others. These processes have already found applications in the treatment of high-strength wastewater such as digested sludge liquor and landfill leachate. Among other emerging denitrification technologies, consideration is given to the Membrane Biofilm Reactors (MBfRs) that can be operated both in oxidation and reduction mode.
In this study, we report an extensive set of analytical results on the quality of the biogas produced by a landfill of automotive shredder residues. In particular, the investigation was directed towards the identification of a spectrum of polycyclic aromatic hydrocarbons (16 compounds) and a wide range of volatile organic compounds (35 compounds). This article highlights the most important indications of toxicological concern for the detected compounds. Among the polycyclic aromatic hydrocarbons, chrysene shows the highest concentration, followed by pyrene and benzo(b)fluoranthene. Dibenz(a,h)anthracene, the most carcinogenic of the tested compounds, displayed results below the limit of analytical detectability. Benzo(a)pyrene, another typical carcinogenic compound, was detected at low concentrations. With regard to volatile organic compounds, the survey revealed a relevant concentration of toluene (found in fuels and paint thinner) significantly higher than the other compounds. Noticeable amounts of hexane, trichloromethane, and acetone were also found.
This article presents the results of an experimental study on the correlation among the specific denitrification rate (SDNR), the dissolved oxygen concentration (DO), the F:M ratio (F:M) and the mixed-liquor (ML) recycle in the pre-denitrification reactors fed by domestic sewage. The experimental curves reveal a 28.8-32.0% reduction in the SDNR at 20 degrees C (SDNR(20 degrees C)) with DO equal to 0.1 mgO2 L(-1) and F:M in the range 0.2-0.4 kgBOD5 kgMLVSS(-1) d(-1). The SDNR reduction increases to 50.0-55.9% with DO = 0.3 mgO2 L(-1). A mathematical correlation of these results and an equation for calculating SDNR(20 degrees C) as function of the F:M as well as the average DO and BOD5 in the total flow rate fed in the denitrification stage are proposed. The conducted experience gives useful suggestions for practical usage, in particular regarding the denitrification reactor design, and represents a good starting point for future applications with the aim to optimize the biological process in domestic sewage treatment plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.