Artificial intelligence (AI) is a powerful technology with an increasing popularity and applications in areas ranging from marketing to banking and finance, from agriculture to healthcare and security, from space exploration to robotics and transport, and from chatbots to artificial creativity and manufacturing. Although many of these areas closely relate to the urban context, there is limited understanding of the trending AI technologies and their application areas—or concepts—in the urban planning and development fields. Similarly, there is a knowledge gap in how the public perceives AI technologies, their application areas, and the AI-related policies and practices of our cities. This study aims to advance our understanding of the relationship between the key AI technologies (n = 15) and their key application areas (n = 16) in urban planning and development. To this end, this study examines public perceptions of how AI technologies and their application areas in urban planning and development are perceived and utilized in the testbed case study of Australian states and territories. The methodological approach of this study employs the social media analytics method, and conducts sentiment and content analyses of location-based Twitter messages (n = 11,236) from Australia. The results disclose that: (a) digital transformation, innovation, and sustainability are the most popular AI application areas in urban planning and development; (b) drones, automation, robotics, and big data are the most popular AI technologies utilized in urban planning and development, and; (c) achieving the digital transformation and sustainability of cities through the use of AI technologies—such as big data, automation and robotics—is the central community discussion topic.
Artificial intelligence (AI) is a powerful technology with a range of capabilities, which are beginning to become apparent in all industries nowadays. The increased popularity of AI in the construction industry, however, is rather limited in comparison to other industry sectors. Moreover, despite AI being a hot topic in built environment research, there are limited review studies that investigate the reasons for the low-level AI adoption in the construction industry. This study aims to reduce this gap by identifying the adoption challenges of AI, along with the opportunities offered, for the construction industry. To achieve the aim, the study adopts a systematic literature review approach using the PRISMA protocol. In addition, the systematic review of the literature focuses on the planning, design, and construction stages of the construction project lifecycle. The results of the review reveal that (a) AI is particularly beneficial in the planning stage as the success of construction projects depends on accurate events, risks, and cost forecasting; (b) the major opportunity in adopting AI is to reduce the time spent on repetitive tasks by using big data analytics and improving the work processes; and (c) the biggest challenge to incorporate AI on a construction site is the fragmented nature of the industry, which has resulted in issues of data acquisition and retention. The findings of the study inform a range of parties that operate in the construction industry concerning the opportunities and challenges of AI adaptability and help increase the market acceptance of AI practices.
Artificial intelligence (AI) is a powerful technology that can be utilized throughout a construction project lifecycle. Transition to incorporate AI technologies in the construction industry has been delayed due to the lack of know-how and research. There is also a knowledge gap regarding how the public perceives AI technologies, their areas of application, prospects, and constraints in the construction industry. This study aims to explore AI technology adoption prospects and constraints in the Australian construction industry by analyzing social media data. This study adopted social media analytics, along with sentiment and content analyses of Twitter messages (n = 7906), as the methodological approach. The results revealed that: (a) robotics, internet-of-things, and machine learning are the most popular AI technologies in Australia; (b) Australian public sentiments toward AI are mostly positive, whilst some negative perceptions exist; (c) there are distinctive views on the opportunities and constraints of AI among the Australian states/territories; (d) timesaving, innovation, and digitalization are the most common AI prospects; and (e) project risk, security of data, and lack of capabilities are the most common AI constraints. This study is the first to explore AI technology adoption prospects and constraints in the Australian construction industry by analyzing social media data. The findings inform the construction industry on public perceptions and prospects and constraints of AI adoption. In addition, it advocates the search for finding the most efficient means to utilize AI technologies. The study helps public perceptions and prospects and constraints of AI adoption to be factored in construction industry technology adoption.
Natural hazard-related disasters are disruptive events with significant impact on people, communities, buildings, infrastructure, animals, agriculture, and environmental assets. The exponentially increasing anthropogenic activities on the planet have aggregated the climate change and consequently increased the frequency and severity of these natural hazard-related disasters, and consequential damages in cities. The digital technological advancements, such as monitoring systems based on fusion of sensors and machine learning, in early detection, warning and disaster response systems are being implemented as part of the disaster management practice in many countries and presented useful results. Along with these promising technologies, crowdsourced social media disaster big data analytics has also started to be utilized. This study aims to form an understanding of how social media analytics can be utilized to assist government authorities in estimating the damages linked to natural hazard-related disaster impacts on urban centers in the age of climate change. To this end, this study analyzes crowdsourced disaster big data from Twitter users in the testbed case study of Australian states and territories. The methodological approach of this study employs the social media analytics method and conducts sentiment and content analyses of location-based Twitter messages (n = 131,673) from Australia. The study informs authorities on an innovative way to analyze the geographic distribution, occurrence frequency of various disasters and their damages based on the geo-tweets analysis.
This MPhil thesis provides an overview of AI technologies and the key opportunities and challenges these technologies bring to the construction industry. The first study was a literature review that identified and explored the theoretical foundations underpinning AI technologies that are currently being used in construction, specifically in the design, planning and construction stages. Secondly, the study used social media analytics to explore AI technology adoption, prospects and constraints in the Australian construction industry. Finally, a sentiment analysis established the opportunities, challenges and public perception towards AI technologies in construction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.