We address the problem of Electric Vehicle (EV) drivers' assistance through Intelligent Transportation System (ITS). Drivers of EVs that are low in battery may ask a navigation service for advice on which charging station to use and which route to take. A rational driver will follow the received advice, provided there is no better choice i.e., in game-theory terms, if such advice corresponds to a Nash-equilibrium strategy. Thus, we model the problem as a game: first we propose a congestion game, then a game with congestion-averse utilities, both admitting at least one pure-strategy Nash equilibrium. The former represents a practical scenario with a high level of realism, although at a high computational price. The latter neglects some features of the real-world scenario but it exhibits very low complexity, and is shown to provide results that, on average, differ by 16% from those obtained with the former approach. Furthermore, when drivers value the trip time most, the average per-EV performance yielded by the Nash equilibria and the one attained by solving a centralized optimization problem that minimizes the EV trip time differ by 15% at most. This is an important result, as minimizing this quantity implies reduced road traffic congestion and energy consumption, as well as higher user satisfaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.