Background. The use of teledermatology has spread over the last years, especially during the recent SARS-Cov-2 pandemic. Teledermoscopy, an extension of teledermatology, consists of consulting dermoscopic images, also transmitted through smartphones, to remotely diagnose skin tumors or other dermatological diseases. The purpose of this work was to verify the diagnostic validity of images acquired with an inexpensive smartphone microscope (NurugoTM), employing convolutional neural networks (CNN) to classify malignant melanoma (MM), melanocytic nevus (MN), and seborrheic keratosis (SK). Methods. The CNN, trained with 600 dermatoscopic images from the ISIC (International Skin Imaging Collaboration) archive, was tested on three test sets: ISIC images, images acquired with the NurugoTM, and images acquired with a conventional dermatoscope. Results. The results obtained, although with some limitations due to the smartphone device and small data set, were encouraging, showing comparable results to the clinical dermatoscope and up to 80% accuracy (out of 10 images, two were misclassified) using the NurugoTM demonstrating how an amateur device can be used with reasonable levels of diagnostic accuracy. Conclusion. Considering the low cost and the ease of use, the NurugoTM device could be a useful tool for general practitioners (GPs) to perform the first triage of skin lesions, aiding the selection of lesions that require a face-to-face consultation with dermatologists.
The ‘cardiosphere’ is a 3D cluster of cardiac progenitor cells recapitulating a stem cell niche-like microenvironment with a potential for disease and regeneration modelling of the failing human myocardium. In this multicellular 3D context, it is extremely important to decrypt the spatial distribution of cell markers for dissecting the evolution of cellular phenotypes by direct quantification of fluorescent signals in confocal microscopy. In this study, we present a fully automated method, named CARE (‘CARdiosphere Evaluation’), for the segmentation of membranes and cell nuclei in human-derived cardiospheres. The proposed method is tested on twenty 3D-stacks of cardiospheres, for a total of 1160 images. Automatic results are compared with manual annotations and two open-source software designed for fluorescence microscopy. CARE performance was excellent in cardiospheres membrane segmentation and, in cell nuclei detection, the algorithm achieved the same performance as two expert operators. To the best of our knowledge, CARE is the first fully automated algorithm for segmentation inside
in vitro
3D cell spheroids, including cardiospheres. The proposed approach will provide, in the future, automated quantitative analysis of markers distribution within the cardiac niche-like environment, enabling predictive associations between cell mechanical stresses and dynamic phenotypic changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.