Exosomes secreted by normal and cancer cells carry and deliver a variety of molecules. To date, mechanisms referring to tumor exosome trafficking, including release and cell-cell transmission, have not been described. To gain insight into this, exosomes purified from metastatic melanoma cell medium were labeled with a lipid fluorescent probe, R18, and analyzed by spectrofluorometry and confocal microscopy. A low pH condition is a hallmark of tumor malignancy, potentially influencing exosome release and uptake by cancer cells. Using different pH conditions as a modifier of exosome traffic, we showed (i) an increased exosome release and uptake at low pH when compared with a buffered condition and (ii) exosome uptake by melanoma cells occurred by fusion. Membrane biophysical analysis, such as fluidity and lipid composition, indicated a high rigidity and sphingomyelin/ganglioside GM3 (N-acetylneuraminylgalactosylglucosylceramide) content in exosomes released at low pH. This was likely responsible for the increased fusion efficiency. Consistent with these results, pretreatment with proton pump inhibitors led to an inhibition of exosome uptake by melanoma cells. Fusion efficiency of tumor exosomes resulted in being higher in cells of metastatic origin than in those derived from primary tumors or normal cells. Furthermore, we found that caveolin-1, a protein involved in melanoma progression, is highly delivered through exosomes released in an acidic condition. The results of our study provide the evidence that exosomes may be used as a delivery system for paracrine diffusion of tumor malignancy, in turn supporting the importance of both exosomes and tumor pH as key targets for future anti-cancer strategies.
Large metal ions (>0.9 A ionic radius) have previously been found to bind only weakly to human serum transferrin (hTF, 80 kDa), presumably because the interdomain cleft cannot close around the metal and synergistic anion. Surprisingly, therefore, we report that Bi3+ (ionic radius 1.03 A), a metal ion widely used in anti-ulcer drugs, binds strongly to both the N- and C-lobes with log K1* = 19.42 and log K2* = 18.58 (10 mM Hepes, 5 mM bicarbonate, 310 K). The uptake of Bi3+ by apo-hTF from bismuth citrate complexes is very slow (hours), whereas that from bismuth nitrilotriacetate is rapid (minutes). Evidence from absorption and NMR spectroscopy is presented to show that Bi3+ binds to the specific Fe3+ binding sites along with carbonate as the synergistic anion. Under the conditions used, preferential binding of Bi3+ to the C-lobe of hTF is observed. Linear free energy relationships show that there is a strong correlation between the strength of binding of Bi3+ and Fe3+ to a wide variety of ligands which include transferrin. Therefore we conclude that the strength of metal ion binding to transferrin is determined more by the ligand donor set than by the size of the ion.
Abstract. Caveolae are 50-100-nm membrane microdomains that represent a subcompartment of the plasma membrane. Previous morphological studies have implicated caveolae in (a) the transcytosis of macromolecules (including LDL and modified LDLs) across capillary endothelial cells, (b) the uptake of small molecules via a process termed potocytosis involving GPI-linked receptor molecules and an unknown anion transport protein, (c) interactions with the actin-based cytoskeleton, and (d) the compartmentalization of certain signaling molecules, including G-protein coupled receptors. Caveolin, a 22-kD integral membrane protein, is an important structural component of caveolae that was first identified as a major v-Src substrate in Rous sarcoma virus transformed cells. This finding initially suggested a relationship between caveolin, transmembrane signaling, and cellular transformation.We have recently developed a procedure for isolating caveolin-rich membrane domains from cultured cells. To facilitate biochemical manipulations, we have applied this procedure to lung tissue-an endothelial and caveolin-rich source-allowing large scale preparation of these complexes. These membrane domains retain *85 % of caveolin and ,',,55 % of a GPI-linked marker protein, while they exclude I>98% of integral plasma membrane protein markers and t>99.6% of other organelle-specific membrane markers tested. Characterization of these complexes by micro-sequencing and immuno-blotting reveals known receptors for modified forms of LDL (scavenger receptors: CD 36 and RAGE), multiple GPI-linked proteins, an anion transporter (plasma membrane porin), cytoskeletal elements, and cytoplasmic signaling molecules-including Src-like kinases, hetero-trimeric G-proteins, and three members of the Rap family of small GTPases (Rap I-the Ras tumor suppressor protein, Rap 2, and TC21). At least a fraction of the actin in these complexes appeared monomeric (G-actin), suggesting that these domains could represent membrane bound sites for microfilament nucleation/assembly during signaling. Given that the majority of these proteins are known molecules, our current studies provide a systematic basis for evaluating these interactions in vivo.
Abstract. GPI-linked protein molecules become Triton-insoluble during polarized sorting to the apical cell surface of epithelial cells. These insoluble complexes, enriched in cholesterol, glycolipids, and GPIlinked proteins, have been isolated by flotation on sucrose density gradients and are thought to contain the putative GPI-sorting machinery. As the cellular origin and molecular protein components of this complex remain unknown, we have begun to characterize these low-density insoluble complexes isolated from MDCK cells. We find that these complexes, which represent 0.4-0.8 % of the plasma membrane, ultrastructurally resemble caveolae and are over 150-fold enriched in a model GPI-anchored protein and caveolin, a caveolar marker protein. However, they exclude many other plasma membrane associated molecules and organellespecific marker enzymes, suggesting that they represent microdomains of the plasma membrane. In addition to caveolin, these insoluble complexes contain a subset of hydrophobic plasma membrane proteins and cytoplasmicaUy-oriented signaling molecules, including: (a) GTP-binding proteins-both small and heterotrimeric; (b) annexin N-an apical calcium-regulated phospholipid binding protein with a demonstrated role in exocytic fusion events; (c) c-Yes-an apically localized member of the Src family of non-receptor type protein-tyrosine kinases; and (d) an unidentified serine-kinase activity. As we demonstrate that caveolin is both a transmembrane molecule and a major phospho-acceptor component of these complexes, we propose that caveolin could function as a transmembrahe adaptor molecule that couples luminal GPIlinked proteins with cytoplasmically oriented signaling molecules during GPI-membrane trafficking or GPImediated signal transduction events. In addition, our results have implications for understanding v-Src transformation and the actions of cholera and pertussis toxins on hetero-trimeric G proteins.
Caveolae are flask-shaped plasma membrane specializations. A 22-kDa protein, caveolin, is a principal component of caveolar membranes in vivo. As recent evidence suggests that caveolae may participate in G protein-coupled signaling events, we have investigated the potential interaction of caveolin with heterotrimeric G proteins. Using cell fractionation techniques, we found that mutational or pharmacologic activation of Gs alpha prevents its cofractionation with caveolin. In a second independent approach, we directly examined the interaction of G proteins with caveolin. For this purpose, we recombinantly expressed caveolin as a glutathione S-transferase fusion protein. Using an in vitro binding assay, we found that caveolin interacts with G protein alpha subunits (Gs, Go, and Gi). Mutational or pharmacologic activation (with guanosine 5'-O-(thiotriphosphate)) of G alpha subunits prevents this interaction, indicating that the inactive GDP-bound form of G alpha subunits preferentially interacts with caveolin. This G protein binding activity is located within a 41-amino acid region of caveolin's cytoplasmic N-terminal domain (residues 61-101). Further functional analysis shows that a polypeptide derived from this region of caveolin (residues 82-101) effectively suppresses the basal activity of purified G proteins, apparently by inhibiting GDP/GTP exchange. This caveolin sequence is homologous to a region of the Rab GDP dissociation inhibitor, a known inhibitor of GDP/GTP exchange for Rab proteins. These data suggest that caveolin could function to negatively regulate the activation state of heterotrimeric G proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.