An efficient and systematic treatment of classical and neoclassical transport in all regimes of collisionality is formulated that permits toroidal rotation speeds on the order of the ion thermal speed for arbitrary aspect ratio, cross section, and poloidal magnetic field strength. A more convenient, but somewhat unconventional, form of the reduced kinetic equation is derived that is shown to extend the previous form by properly retaining electric field modifications. The generalized kinetic description is exploited to evaluate explicitly the radial fluxes of toroidal angular momentum and energy in a pure plasma via a variational formulation. The specific results obtained in the Pfirsch–Schlüter regime are substantially more general than previous evaluations; also, significant improvements are made in the banana regime.
A non-perturbative quantum field theory of General Relativity is presented which leads to a new realization of the theory of covariant quantum gravity (CQG-theory). The treatment is founded on the recently identified Hamiltonian structure associated with the classical space-time, i.e., the corresponding manifestly covariant Hamilton equations and the related Hamilton-Jacobi theory. The quantum Hamiltonian operator and the CQG-wave equation for the corresponding CQG-state and wave function are realized in 4-scalar form. The new quantum wave equation is shown to be equivalent to a set of quantum hydrodynamic equations which warrant the consistency with the classical GR Hamilton-Jacobi equation in the semiclassical limit. A perturbative approximation scheme is developed, which permits the adoption of the harmonic oscillator approximation for the treatment of the Hamiltonian potential. As an application of the theory, the stationary vacuum CQG-wave equation is studied, yielding a stationary equation for the CQG-state in terms of the 4-scalar invariant-energy eigenvalue associated with the corresponding approximate quantum Hamiltonian operator. The conditions for the existence of a discrete invariant-energy spectrum are pointed out. This yields a possible estimate for the graviton mass together with a new interpretation about the quantum origin of the cosmological constant.
The problem of formulating synchronous variational principles in the context of General Relativity is discussed. Based on the analogy with classical relativistic particle dynamics, the existence of variational principles is pointed out in relativistic classical field theory which are either asynchronous or synchronous. The historical Einstein-Hilbert and Palatini variational formulations are found to belong to the first category. Nevertheless, it is shown that an alternative route exists which permits one to cast these principles in terms of equivalent synchronous Lagrangian variational formulations. The advantage is twofold. First, synchronous approaches allow one to overcome the lack of gauge symmetry of the asynchronous principles. Second, the property of manifest covariance of the theory is also restored at all levels, including the symbolic Euler-Lagrange equations, with the variational Lagrangian density being now identified with a 4−scalar. As an application, a joint synchronous variational principle holding both for the non-vacuum Einstein and Maxwell equations is displayed, with the matter source being described by means of a Vlasov kinetic treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.