Aims
To evaluate the impact of the COVID-19 pandemic on patient admissions to Italian cardiac care units (CCUs).
Methods and Results
We conducted a multicentre, observational, nationwide survey to collect data on admissions for acute myocardial infarction (AMI) at Italian CCUs throughout a 1 week period during the COVID-19 outbreak, compared with the equivalent week in 2019. We observed a 48.4% reduction in admissions for AMI compared with the equivalent week in 2019 (P < 0.001). The reduction was significant for both ST-segment elevation myocardial infarction [STEMI; 26.5%, 95% confidence interval (CI) 21.7–32.3; P = 0.009] and non-STEMI (NSTEMI; 65.1%, 95% CI 60.3–70.3; P < 0.001). Among STEMIs, the reduction was higher for women (41.2%; P = 0.011) than men (17.8%; P = 0.191). A similar reduction in AMI admissions was registered in North Italy (52.1%), Central Italy (59.3%), and South Italy (52.1%). The STEMI case fatality rate during the pandemic was substantially increased compared with 2019 [risk ratio (RR) = 3.3, 95% CI 1.7–6.6; P < 0.001]. A parallel increase in complications was also registered (RR = 1.8, 95% CI 1.1–2.8; P = 0.009).
Conclusion
Admissions for AMI were significantly reduced during the COVID-19 pandemic across Italy, with a parallel increase in fatality and complication rates. This constitutes a serious social issue, demanding attention by the scientific and healthcare communities and public regulatory agencies.
Among patients with unstable angina or myocardial infarction without ST-segment elevation, prasugrel did not significantly reduce the frequency of the primary end point, as compared with clopidogrel, and similar risks of bleeding were observed. (Funded by Eli Lilly and Daiichi Sankyo; TRILOGY ACS ClinicalTrials.gov number, NCT00699998.).
The protein kinase mTOR (Mammalian or Mechanistic Target of Rapamycin) is an atypical serine/threonine kinase that exerts its main cellular functions by interacting with specific adaptor proteins to form two different multiprotein complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). mTORC1 regulates protein synthesis, cell growth and proliferation, autophagy, cell metabolism and stress responses, whereas mTORC2 appears to regulate cell survival and polarity.
The mTOR pathway plays a key regulatory function in cardiovascular physiology and pathology. However, the majority of the information available about mTOR function in the cardiovascular system is related to the role of mTORC1 in the unstressed and stressed heart. mTORC1 is required for embryonic cardiovascular development and for postnatal maintenance of cardiac structure and function. In addition, mTORC1 is necessary for cardiac adaptation to pressure overload and development of compensatory hypertrophy. However, partial and selective pharmacologic and genetic inhibition of mTORC1 was shown to extend life span in mammals, reduce pathological hypertrophy and heart failure caused by increased load or genetic cardiomyopathies, reduce myocardial damage after acute and chronic myocardial infarction and reduce cardiac derangements caused by metabolic disorders. The optimal therapeutic strategy to target mTORC1 and increase cardioprotection is under deep investigation.
This article reviews the information available regarding the effects exerted by mTOR signaling in cardiovascular physiology and pathological states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.