Recently, genome sequencing of many isolates of genetically monomorphic bacterial human pathogens has given new insights into pathogen microevolution and phylogeography. Here, we report a genome-based micro-evolutionary study of a bacterial plant pathogen, Pseudomonas syringae pv. tomato. Only 267 mutations were identified between five sequenced isolates in 3,543,009 nt of analyzed genome sequence, which suggests a recent evolutionary origin of this pathogen. Further analysis with genome-derived markers of 89 world-wide isolates showed that several genotypes exist in North America and in Europe indicating frequent pathogen movement between these world regions. Genome-derived markers and molecular analyses of key pathogen loci important for virulence and motility both suggest ongoing adaptation to the tomato host. A mutational hotspot was found in the type III-secreted effector gene hopM1. These mutations abolish the cell death triggering activity of the full-length protein indicating strong selection for loss of function of this effector, which was previously considered a virulence factor. Two non-synonymous mutations in the flagellin-encoding gene fliC allowed identifying a new microbe associated molecular pattern (MAMP) in a region distinct from the known MAMP flg22. Interestingly, the ancestral allele of this MAMP induces a stronger tomato immune response than the derived alleles. The ancestral allele has largely disappeared from today's Pto populations suggesting that flagellin-triggered immunity limits pathogen fitness even in highly virulent pathogens. An additional non-synonymous mutation was identified in flg22 in South American isolates. Therefore, MAMPs are more variable than expected differing even between otherwise almost identical isolates of the same pathogen strain.
Pseudomonas syringae pv. tomato strain DC3000 (PtoDC3000) is one of the most intensively studied bacterial plant pathogens today. Here we report a thorough investigation into PtoDC3000 and close relatives isolated from Antirrhinum majus (snapdragon), Apium graveolens (celery), and Solanaceae and Brassicaceae species. Multilocus sequence typing (MLST) was used to resolve the precise phylogenetic relationship between isolates and to determine the importance of recombination in their evolution. MLST data were correlated with an analysis of the locus coding for the type III secreted (T3S) effector AvrPto1 to investigate the role of recombination in the evolution of effector repertoires. Host range tests were performed to determine if closely related isolates from different plants have different host ranges. It was found that PtoDC3000 is located in the same phylogenetic cluster as isolates from several Brassicaceae and Solanaceae species and that these isolates have a relatively wide host range that includes tomato, Arabidopsis thaliana, and cauliflower. All other analyzed tomato isolates from three different continents form a distinct cluster and are pathogenic only on tomato. Therefore, PtoDC3000 is a very unusual tomato isolate. Several recombination breakpoints were detected within sequenced gene fragments, and population genetic tests indicate that recombination contributed more than mutation to the variation between isolates. Moreover, recombination may play an important role in the reassortment of T3S effectors between strains. The data are finally discussed from a taxonomic standpoint, and P. syringae pv. tomato is proposed to be divided into two pathovars.Pseudomonas syringae pv. tomato DC3000 (PtoDC3000) is one of the most intensively studied plant pathogen isolates today. It was completely sequenced (6), and a large part of what is known about the plant immune system has been learned by studying the interaction of PtoDC3000 with its hosts Arabidopsis thaliana and tomato (Solanum lycopersicum), as can be seen from many recent high-profile publications (see references 39 and 47 for examples). However, much less is known about how PtoDC3000 relates to other P. syringae strains. Although PtoDC3000 is a rifampin-resistant derivative of the type strain of P. syringae pv. tomato (9; D. Cuppels, personal communication), its host range (which includes tomato, cauliflower [Brassica oleracea var. botrytis], and A. thaliana) was found to be more similar to that of pathovar maculicola isolates from Brassicaceae species than to the host range of other P. syringae pv. tomato strains (which are limited to tomato) (10, 58). Also, based on physiological (10) and molecular analyses (10, 63), PtoDC3000 was suggested to be more similar to pathovar maculicola strains than to other pathovar tomato strains. However, since strains of pathovars tomato, maculicola, antirrhini (isolated from ornamental snapdragon, Antirrhinum majus), and apii (isolated from celery, Apium graveolens) were all found to be closely related (18, 25), the...
Beans are important dietary components with versatile health benefits. We analysed the extracts of twelve ecotypes of Phaseolus vulgaris in order to determine their phenolic profiles, antioxidant activity, and the in vitro antiproliferative activity. Ultra-performance liquid chromatography with diode array detector (UPLC-DAD) admitted us to detect and quantify some known polyphenols, such as gallic acid, chlorogenic acid, epicatechin, myricetin, formononetin, caffeic acid, and kaempferol. The antioxidant activity (AA) ranged from 1.568 ± 0.041 to 66.572 ± 3.197 mg necessary to inhibit the activity of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical by 50% (EC50). The extracts, except those obtained from the nonpigmented samples, were capable of inhibiting the proliferation of the human epithelial colorectal adenocarcinoma (Caco-2) cells, human breast cancer cells MCF-7, and A549 NSCLC cell line. Cultivars differed in composition and concentration of polyphenols including anthocyanins; cooking affected the antioxidant activity only marginally. Qualitative and quantitative differences in phenolic composition between the groups of beans influenced the biological activities; on the other hand, we did not find significant differences on the biological activities within the same variety, before and after cooking.
The Black Soldier Fly (Hermetia illucens (L.), Diptera: Stratiomyidae) is an insect whose larvae thrive on agro-industrial by-products. This study reports the first use of black soldier fly larvae processing residue (BSPR) as an innovative ingredient for growing media. BSPR was characterized and evaluated to partially replace commercial peat (CP) in the production of potted plants. Chemical and microbiological analysis showed the suitability of BSPR for soilless production. Hence, six growing media mixtures (CP 100% + slow acting synthetic solid fertilizer, CP 90% + BSPR 10%, CP 80% + BSPR 20%, CP 70% + BSPR 30%, CP 60% + BSPR 40% and CP 100% without fertilizer) were assessed for the production of baby leaf lettuce, basil and tomato potted plants. Using BSPR in a proportion up to 20%, all investigated crops showed values significantly greater than or comparable to those obtained using CP 100% + slow acting synthetic solid fertilizer. In general, BSPR used in a proportion up to 20% increased the crop growth of baby leaf lettuce, basil and tomato, recording a high total dry weight (+31%, compared to the total average) and the measured leaf parameters (+39% of leaf area, +14% of leaf number), without showing abiotic stresses. This study indicates that BSPR used in a proportion up to 20% might be a valid approach for soilless production of potted baby leaf lettuce, basil and tomato plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.