Despite the integral role of ice nucleators (IN) in atmospheric processes leading to precipitation, their sources and distributions have not been well established. We examined IN in snowfall from mid- and high-latitude locations and found that the most active were biological in origin. Of the IN larger than 0.2 micrometer that were active at temperatures warmer than -7 degrees C, 69 to 100% were biological, and a substantial fraction were bacteria. Our results indicate that the biosphere is a source of highly active IN and suggest that these biological particles may affect the precipitation cycle and/or their own precipitation during atmospheric transport.
Recently, genome sequencing of many isolates of genetically monomorphic bacterial human pathogens has given new insights into pathogen microevolution and phylogeography. Here, we report a genome-based micro-evolutionary study of a bacterial plant pathogen, Pseudomonas syringae pv. tomato. Only 267 mutations were identified between five sequenced isolates in 3,543,009 nt of analyzed genome sequence, which suggests a recent evolutionary origin of this pathogen. Further analysis with genome-derived markers of 89 world-wide isolates showed that several genotypes exist in North America and in Europe indicating frequent pathogen movement between these world regions. Genome-derived markers and molecular analyses of key pathogen loci important for virulence and motility both suggest ongoing adaptation to the tomato host. A mutational hotspot was found in the type III-secreted effector gene hopM1. These mutations abolish the cell death triggering activity of the full-length protein indicating strong selection for loss of function of this effector, which was previously considered a virulence factor. Two non-synonymous mutations in the flagellin-encoding gene fliC allowed identifying a new microbe associated molecular pattern (MAMP) in a region distinct from the known MAMP flg22. Interestingly, the ancestral allele of this MAMP induces a stronger tomato immune response than the derived alleles. The ancestral allele has largely disappeared from today's Pto populations suggesting that flagellin-triggered immunity limits pathogen fitness even in highly virulent pathogens. An additional non-synonymous mutation was identified in flg22 in South American isolates. Therefore, MAMPs are more variable than expected differing even between otherwise almost identical isolates of the same pathogen strain.
Biological ice nucleators (IN) function as catalysts for freezing at relatively warm temperatures (warmer than ؊10°C).We examined the concentration (per volume of liquid) and nature of IN in precipitation collected from Montana and Louisiana, the Alps and Pyrenees (France), Ross Island (Antarctica), and Yukon (Canada). The temperature of detectable ice-nucleating activity for more than half of the samples was > ؊5°C based on immersion freezing testing. Digestion of the samples with lysozyme (i.e., to hydrolyze bacterial cell walls) led to reductions in the frequency of freezing (0 -100%); heat treatment greatly reduced (95% average) or completely eliminated ice nucleation at the measured conditions in every sample. These behaviors were consistent with the activity being bacterial and/or proteinaceous in origin. atmosphere ͉ climate ͉ microbial dissemination ͉ biological ice nuclei A t subzero temperatures warmer than Ϫ40°C, aerosol particles in clouds initiate freezing through the heterogeneous nucleation of ice directly from water vapor or by freezing droplets via several mechanisms: deposition, condensation, contact, and immersion freezing (1). These processes lead to ice formation in clouds that can trigger precipitation. A diverse range of natural and anthropogenic particles, referred to as ice-forming nuclei or ice nucleators (IN), are capable of initiating the ice phase (2). The maximum temperature at which an IN can initiate freezing is specific to that nucleator, but they function similarly by providing templates for the aggregation of individual water molecules in the configuration of an ice embryo, resulting in a subsequent phase change and the cascade of crystal formation (3). Consequently, knowledge of the nature and sources of IN in the atmosphere is important for understanding the meteorological processes responsible for precipitation. The most active naturally occurring IN are biological in origin and have the capacity to catalyze freezing at temperatures near Ϫ2°C (4). The most widespread and well-studied biological aerosols with icenucleating activity are comprised of certain species of plantassociated bacteria (Pseudomonas syringae, Pseudomonas viridiflava, Pseudomonas fluorescens, Pantoea agglomerans, and Xanthomonas campestris), but also fungi (e.g., Fusarium avenaceum), algae such as Chlorella minutissima, and birch pollen (5). P. syringae (6 -8) and F. avenaceum (7) in particular have been detected in atmospheric aerosols and clouds. Icenucleating strains of P. syringae possess a 120-to 180-kDa ice nucleation active protein in their outer membrane comprised of contiguous repeats of a consensus octapeptide; the protein binds water molecules in an ordered arrangement, providing a nucleating template that enhances ice crystal formation (9).Based on reports of ice-nucleating bacteria at altitudes of several kilometers (6, 10) and the warm temperatures at which they function as ice nuclei (Ϫ2°C to Ϫ7°C; ref. Our previous work on snowfall collected from a variety of midand high-latitude locations...
Intercontinental spread of emerging plant diseases is one of the most serious threats to world agriculture. One emerging disease is bacterial canker of kiwi fruit (Actinidia deliciosa and A. chinensis) caused by Pseudomonas syringae pv. actinidiae (PSA). The disease first occurred in China and Japan in the 1980s and in Korea and Italy in the 1990s. A more severe form of the disease broke out in Italy in 2008 and in additional countries in 2010 and 2011 threatening the viability of the global kiwi fruit industry. To start investigating the source and routes of international transmission of PSA, genomes of strains from China (the country of origin of the genus Actinidia), Japan, Korea, Italy and Portugal have been sequenced. Strains from China, Italy, and Portugal have been found to belong to the same clonal lineage with only 6 single nucleotide polymorphisms (SNPs) in 3,453,192 bp and one genomic island distinguishing the Chinese strains from the European strains. Not more than two SNPs distinguish each of the Italian and Portuguese strains from each other. The Japanese and Korean strains belong to a separate genetic lineage as previously reported. Analysis of additional European isolates and of New Zealand isolates exploiting genome-derived markers showed that these strains belong to the same lineage as the Italian and Chinese strains. Interestingly, the analyzed New Zealand strains are identical to European strains at the tested SNP loci but test positive for the genomic island present in the sequenced Chinese strains and negative for the genomic island present in the European strains. Results are interpreted in regard to the possible direction of movement of the pathogen between countries and suggest a possible Chinese origin of the European and New Zealand outbreaks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.