MXenes, 2D transition metal carbides/nitrides, with superior electrical, optical, and mechanical properties is a recent discovery and have already been deployed in a variety of fields such as batteries, composites, sensors and medical devices.
MXenes are recently discovered 2D nanomaterial with superior mechanical, thermal, and tribological properties, being commonly employed in a wide variety of critical research areas, ranging from cancer therapy to energy and environmental applications. Due to their special properties, such as mechanoceramic nature with excellent mechanical performance, thermal stability and rich surface properties, MXenes have tremendous potential as advanced composite structures, especially those based on polymers due to a great affinity between macromolecules and the terminating groups of 2D MXenes. MXenes have been extensively explored in metal matrix nanocomposites as well as in solid‐ or liquid‐based lubrication systems owing to the 2D structure and antifriction characteristics. The purpose of the this paper is to provide a comprehensive insight into the material, mechanical, and tribological properties of the MXene nanolayers with discussions on the recent advancements attained from MXene‐reinforced nanocomposites starting with the synthesis, fabrication techniques, intricacies of the underlying physics and mechanisms, and finally focusing on the progress in computational studies. This analysis of MXene‐based composites will stimulate an emerging field with innumerable opportunities and ample potentials to produce newfangled materials and structures with targeted properties.
Lightweight high-strength metal matrix nano-composites (MMNCs) can be used in a wide variety of applications, e.g., aerospace, automotive, and biomedical engineering, owing to their sustainability, increased specific strength/stiffness, enhanced elevated temperature strength, improved wear, or corrosion resistance. A metallic matrix, commonly comprising of light aluminum or magnesium alloys, can be significantly strengthened even by very low weight fractions (~1 wt%) of well-dispersed nanoparticles. This review discusses the recent advancements in the fabrication of metal matrix nanocomposites starting with manufacturing routes and different nanoparticles, intricacies of the underlying physics, and the mechanisms of particle dispersion in a particle-metal composite system. Thereafter, the microstructural influences of the nanoparticles on the composite system are outlined and the theory of the strengthening mechanisms is also explained. Finally, microstructural, mechanical, and tribological properties of the selected MMNCs are discussed as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.