Purpose The purpose of this paper is to introduce new and modified “staged combustion” cycles in the form of engineering algorithm as a possible propulsion contender for future aerospace vehicle to achieve the highest possible “total impulse” to “mass” of propulsion system. Design/methodology/approach In this regard, the mathematical cycle model is formed to calculate the engine’s parameters. In addition, flow conditions (pressure, temperature, flow rate, etc). in the chamber, nozzle and turbopump are assessed based on the results of turbo machinery power balance and initial data such as thrust, propellant mixture ratio and specifications. The developed code has been written in the modern, object-oriented C++ programming language. Findings The results of the developed code are compared with the Russian RD180 engine which demonstrates the superiority and capability of new “thermodynamic diagrams”. Research limitations/implications This algorithm is under constraint to control the critical variation of combustion pressure, turbine rpm, pump cavitation and turbine temperature. It is imperative to emphasize that this paper is limited to “oxidizer-rich staged combustion” engines with “single pre-burner”. Originality/value This study sheds light on using fuel booster turbopump and the second-stage fuel pump to moderate the effect of cavitation on pumps which reduces tank pressure and, as a consequence, decreases the propulsion system weight.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.