Additive manufacturing (AM), more commonly known as 3D printing, is a commercially established technology for rapid prototyping and fabrication of bespoke intricate parts. To date, research quality mirror prototypes are being trialled using additive manufacturing, where a high quality reflective surface is created in a post-processing step. One advantage of additive manufacturing for mirror fabrication is the ease to lightweight the structure: the design is no longer confined by traditional machining (mill, drill and lathe) and optimised/innovative structures can be used. The end applications of lightweight AM mirrors are broad; the motivation behind this research is low mass mirrors for space-based astronomical or Earth Observation imaging. An example of a potential application could be within nano-satellites, where volume and mass limits are critical. The research presented in this paper highlights the early stage experimental development in AM mirrors and the future innovative designs which could be applied using AM. The surface roughness on a diamond-turned AM aluminium (AlSi 10 Mg) mirror is presented which demonstrates the ability to achieve an average roughness of ∼3.6nm root mean square (RMS) measured over a 3 × 3 grid. A Fourier transform of the roughness data is shown which deconvolves the roughness into contributions from the diamond-turning tooling and the AM build layers. In addition, two nickel phosphorus (NiP) coated AlSi 10 Mg AM mirrors are compared in terms of surface form error; one mirror has a generic sandwich lightweight design at 44% the mass of a solid equivalent, prior to coating and the second mirror was lightweighted further using the finite element analysis tool topology optimisation. The surface form error indicates an improvement in peak-to-valley (PV) from 323nm to 204nm and in RMS from 83nm to 31nm for the generic and optimised lightweighting respectively while demonstrating a weight reduction between the samples of 18%. The paper concludes with a discussion of the breadth of AM design that could be applied to mirror lightweighting in the future, in particular, topology optimisation, tessellating polyhedrons and Voronoi cells are presented.
This paper reports the development of a helically corrugated interaction region (HCIR) for a 100 W gyrotron traveling wave amplifier operating at a central frequency of 0.37 THz. This HCIR has a corrugation amplitude of 42 µm, with a nominal waveguide diameter of 0.760 mm. The HCIR was made by electroforming copper on a sacrificial aluminium mandrel: the latter was precision CNC milled using a 0.2 mm diameter ball nose cutter. The dispersion characteristics of the HCIR were measured and found to be in good agreement with the analytical calculation and numerical simulation. Measured insertion loss was between 2 dB and 4 dB.
Fabricating mirrors using additive manufacturing (AM; 3D printing) is a promising yet under-researched production route. There are several issues that need to be better understood before AM can be fully adopted to fabricate mirror substrates. A significant obstacle to AM adoption is the presence of porosity and the influence that has on the resultant optical proprieties. Several batches of high-silicon aluminium (AlSi10Mg) samples were created to investigate the relationships laser parameters, laser paths and build orientations have with the porosity. The results showed that eliminating defects relies on a complex interaction of the process parameters and material properties, with the residual heating from the laser proving to be a significant factor. In addition, the use of a hot isostatic press is investigated and some full prototypes of the Cassegrain CubeSat were produced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.