It is common practice amongst coaches and analysts to search for key performance indicators related to attacking play in football. Match analysis in professional football has predominately utilised notational analysis, a statistical summary of events based on video footage, to study the sport and prepare teams for competition. Recent increases in technology have facilitated the dynamic analysis of more complex process variables, giving practitioners the potential to quickly evaluate a match with consideration to contextual parameters. One field of research, known as machine learning, is a form of artificial intelligence that uses algorithms to detect meaningful patterns based on positional data. Machine learning is a relatively new concept in football, and little is known about its usefulness in identifying performance metrics that determine match outcome. Few studies and no reviews have focused on the use of machine learning to improve tactical knowledge and performance, instead focusing on the models used, or as a prediction method. Accordingly, this article provides a critical appraisal of the application of machine learning in football related to attacking play, discussing current challenges and future directions that may provide deeper insight to practitioners.
Key Performance Indicators (KPIs) are used to evaluate the offensive success of a soccer team (e.g. penalty box entries) or player (e.g. pass completion rate). However, knowledge transfer from research to applied practice is understudied. The current study queried practitioners (n = 145, mean ± SD age: 36 ± 9 years) from 42 countries across different roles and levels of competition (National Team Federation to Youth Academy levels) on various forms of data collection, including an explicit assessment of twelve attacking KPIs. 64.3% of practitioners use data tools and applications weekly (predominately) to gather KPIs during matches. 83% of practitioners use event data compared to only 52% of practitioners using positional data, with a preference for shooting related KPIs. Differences in the use and value of metrics derived from positional tracking data (including Ball Possession Metrics) were evident between job role and level of competition. These findings demonstrate that practitioners implement KPIs and gather tactical information in a variety of ways with a preference for simpler metrics related to shots. The low perceived value of newer KPIs afforded by positional data could be explained by low buy-in, a lack of education across practitioners, or insufficient translation of findings by experts towards practice.
This study describes an approach to evaluate the off-ball behaviour of attacking players in association football. The aim was to implement a defensive pressure model to examine an offensive player's ability to create separation from a defender using 1411 high-intensity off-ball actions including 988 Deep Runs (DRs) DRs and 423 Change of Directions (CODs). Twenty-two official matches (14 competitive matches and 8 friendlies) of the German National Team were included in the research. To validate the effectiveness of the pressure model, each pass (n = 25,418) was evaluated for defensive pressure on the receiver at the moment of the pass and for the pass completion rate (R = −.34, p < .001). Next, after assessing the interrater reliability (Fleiss Kappa of 80 for DRs and 78 for CODs), three expert raters annotated all DRs and CODs that met the pre-set criteria. A time-series analysis of each DR and COD was calculated to the nearest 0.1 second, finding a slight increase in pressure from the start to the end of the off-ball actions as defenders re-established proximity to the attacker after separation was created. A linear mixed model using run type (DR or COD) as a fixed effect with the local maximum as a fixed effect on a continuous scale resulted in p < 0.001, d = 4.81, CI = 0.63 to 0.67 for the greatest decrease in pressure, p < 0.001, d = 0.143, CI = 9.18 to 10.61 for length of the longest decrease in pressure, and p < 0.001, d = 1.13, CI = 0.90 to 1.11 for the fastest rate of decrease in pressure. As these values pertain to the local maximum, situations with greater starting pressure on the attacker often led to greater subsequent decreases. Furthermore, there was a significant (p < .0001) difference between offensive and defensive positions and the number of offball actions. Results suggest the model can be applied to quantify and visualise the pressure exerted on non-ball-possessing players. This approach can be combined with other methods of match analysis, providing practitioners with new opportunities to measure tactical performance in football.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.