Selection rules are often considered a hallmark of symmetry. Here, we employ symmetry-breaking degrees of freedom as synthetic dimensions to demonstrate that symmetry-broken systems systematically exhibit a specific class of symmetries and selection rules. These selection rules constrain the scaling of a system’s observables (non-perturbatively) as it transitions from symmetric to symmetry-broken. Specifically, we drive bi-elliptical high harmonic generation (HHG), and observe that the scaling of the HHG spectrum with the pump’s ellipticities is constrained by selection rules corresponding to symmetries in synthetic dimensions. We then show the generality of this phenomenon by analyzing periodically-driven (Floquet) systems subject to two driving fields, tabulating the resulting synthetic symmetries for (2 + 1)D Floquet groups, and deriving the corresponding selection rules for high harmonic generation (HHG) and other phenomena. The presented class of symmetries and selection rules opens routes for ultrafast spectroscopy of phonon-polarization, spin-orbit coupling, symmetry-protected dark bands, and more.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.