In this research, we develop ordinal decision-tree-based ensemble approaches in which an objective-based information gain measure is used to select the classifying attributes. We demonstrate the applicability of the approaches using AdaBoost and random forest algorithms for the task of classifying the regional daily growth factor of the spread of an epidemic based on a variety of explanatory factors. In such an application, some of the potential classification errors could have critical consequences. The classification tool will enable the spread of the epidemic to be tracked and controlled by yielding insights regarding the relationship between local containment measures and the daily growth factor. In order to benefit maximally from a variety of ordinal and non-ordinal algorithms, we also propose an ensemble majority voting approach to combine different algorithms into one model, thereby leveraging the strengths of each algorithm. We perform experiments in which the task is to classify the daily COVID-19 growth rate factor based on environmental factors and containment measures for 19 regions of Italy. We demonstrate that the ordinal algorithms outperform their non-ordinal counterparts with improvements in the range of 6–25% for a variety of common performance indices. The majority voting approach that combines ordinal and non-ordinal models yields a further improvement of between 3% and 10%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.