The concept of a Minkowski arrangement was introduced by Fejes Tóth in 1965 as a family of centrally symmetric convex bodies with the property that no member of the family contains the center of any other member in its interior. This notion was generalized by Fejes Tóth in 1967, who called a family of centrally symmetric convex bodies a generalized Minkowski arrangement of order µ for some 0 < µ < 1 if no member K of the family overlaps the homothetic copy of any other member K with ratio µ and concentric with K . In this note we prove a sharp upper bound on the total area of the elements of a generalized Minkowski arrangement of order µ of finitely many circular disks in the Euclidean plane. This result is a common generalization of a similar result of Fejes Tóth for Minkowski arrangements of circular disks, and a result of Böröczky and Szabó about the maximum density of a generalized Minkowski arrangement of circular disks in the plane. In addition, we give a sharp upper bound on the density of a generalized Minkowski arrangement of homothetic copies of a centrally symmetric convex body.
The concept of a Minkowski arrangement was introduced by Fejes Tóth in 1965 as a family of centrally symmetric convex bodies with the property that no member of the family contains the center of any other member in its interior. This notion was generalized by Fejes Tóth in 1967, who called a family of centrally symmetric convex bodies a generalized Minkowski arrangement of order µ for some 0 < µ < 1 if no member K of the family overlaps the homothetic copy of any other member K ′ with ratio µ and with the same center as K ′ . In this note we prove a sharp upper bound on the total area of the elements of a generalized Minkowski arrangement of order µ of finitely many circular disks in the Euclidean plane. This result is a common generalization of a similar result of Fejes Tóth for Minkowski arrangements of circular disks, and a result of Böröczky and Szabó about the maximum density of a generalized Minkowski arrangement of circular disks in the plane. In addition, we give a sharp upper bound on the density of a generalized Minkowski arrangement of homothetic copies of a centrally symmetric convex body.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.