BackgroundNetwork communities help the functional organization and evolution of complex networks. However, the development of a method, which is both fast and accurate, provides modular overlaps and partitions of a heterogeneous network, has proven to be rather difficult.Methodology/Principal FindingsHere we introduce the novel concept of ModuLand, an integrative method family determining overlapping network modules as hills of an influence function-based, centrality-type community landscape, and including several widely used modularization methods as special cases. As various adaptations of the method family, we developed several algorithms, which provide an efficient analysis of weighted and directed networks, and (1) determine pervasively overlapping modules with high resolution; (2) uncover a detailed hierarchical network structure allowing an efficient, zoom-in analysis of large networks; (3) allow the determination of key network nodes and (4) help to predict network dynamics.Conclusions/SignificanceThe concept opens a wide range of possibilities to develop new approaches and applications including network routing, classification, comparison and prediction.
The network paradigm is increasingly used to describe the topology and dynamics of complex systems. Here, we review the results of the topological analysis of protein structures as molecular networks describing their small-world character, and the role of hubs and central network elements in governing enzyme activity, allosteric regulation, protein motor function, signal transduction and protein stability. We summarize available data how central network elements are enriched in active centers and ligand binding sites directing the dynamics of the entire protein. We assess the feasibility of conformational and energy networks to simplify the vast complexity of rugged energy landscapes and to predict protein folding and dynamics. Finally, we suggest that modular analysis, novel centrality measures, hierarchical representation of networks and the analysis of network dynamics will soon lead to an expansion of this field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.