European legislation and new engine technologies require better quality in fuels, and the diesel scandal pushes engine and fuel developers to investigate new solutions. The decrease of fossil energy sources and the new, stricter emission regulations necessitate the discovery of renewable sources. Biofuels are an obvious solution to replace fossil fuels in a more environmentally conscious way. This study presents a new approach with the analytical investigation of butanol, hydrogenated vegetable oil, and diesel oil blends.In the presented phase of the research, our focus was on the most application- critical chemical properties of the fuels, to analyze if the three component blends are suitable for compression ignition engines. A wide-ranging chemical-analytical test plan was prepared with nearly 20 parameters measured of the chemical and physical parameters of blends, especially regarding flash point, cetane number, viscosity and cold filter plugging point (CFPP).The findings prove that from an engine-critical characteristics point of view butanol – hydrogenated vegetable oil – diesel blends are a potential solution, as HVO and butanol counterbalance its critical parameters.
Increasing fuel demand, decreasing natural reserves and environmental consciousness have together led to testing and implementing new fuels and blending components of compression ignition engines. Biofuels are very commonly added to fossil fuels, mostly ethanol to gasoline and FAME to diesel. Harmonizing their properties with engines is a great challenge for automotive and oil industry. Increasing demand for diesel oil in Europe raised the question about the possibility of increasing the amount of bio extenders. There were and certainly there are a number of experiments aimed at substituting or blending diesel with other fuels. One group of such fuels makes bioethanol– biodiesel–diesel oil mixtures. The paper proposes a global overview on literature and presents the obtained results. The article explores the possibility of using bioethanol–biodiesel–diesel oil mixtures in vehicles and agricultural compression ignition engines. The main aspect of researches was to find blends substitutable for compression ignition engines. Investigations were made to determine the maximum volume of a renewable part thus reaching the same or similar power output with lowering emissions. The received results were used for environmental and economical investigations. The valorisation of the results shows that bioethanol–biodiesel–diesel blends fulfil the cetane number, viscosity and lubricity requirements for standard diesel. Practical measurements and engine tests show that the utilization of a new fuel decreases emissions from the engine. The results of agricultural feedstock calculation indicate that in Hungary the biofuel part of the investigated fuels can be produced from an overflow.
The aim of this paper is to evaluate the impact of connected autonomous behavior in real vehicles on vehicle fuel consumption and emission reductions. Authors provide a preliminary theoretical summary to assess the driving conditions of autonomous vehicles in roundabout, which attempts exploring the impact of driving behavior patterns on fuel consumption and emissions, and including other key factors of autonomous vehicles to reduce fuel consumption and emissions. After summarizing, driving behavior, effective in-vehicle systems, both roundabout physical parameters and vehicle type are all play an important role in energy using. ZalaZONE’s roundabout is selected for preliminary test scenario establishment, which lays a design foundation for further in-depth testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.