The image memorability consists in the faculty of an image to be recalled after a period of time. Recently, the memorability of an image database was measured and some factors responsible for this memorability were highlighted. In this paper, we investigate the role of visual attention in image memorability around two axis. The first one is experimental and uses results of eye-tracking performed on a set of images of different memorability scores. The second investigation axis is predictive and we show that attention-related features can advantageously replace low-level features in image memorability prediction. From our work it appears that the role of visual attention is important and should be more taken into account along with other low-level features.
Our research deals with a semi-automatic region-growing segmentation technique. This method only needs one seed inside the region of interest (ROI). We applied it for spinal cord segmentation but it also shows results for parotid glands or even tumors. Moreover, it seems to be a general segmentation method as it could be applied in other computer vision domains then medical imaging. We use both the thresholding simplicity and the spatial information. The gray-scale and spatial distances from the seed to all the other pixels are computed. By normalizing and subtracting to 1 we obtain the probability for a pixel to belong to the same region as the seed. We will explain the algorithm and show some preliminary results which are encouraging.
In this paper, a new bottom-up visual saliency model is proposed. Based on the idea that locally contrasted and globally rare features are salient, this model will be called "RARE" in the following sections. It uses a sequential bottom-up features extraction where first low-level features as luminance and chrominance are computed and from those results medium-level features as image orientations are extracted. A qualitative and a quantitative comparison are achieved on a 120 images dataset. The RARE algorithm powerfully predicts human fixations compared with most of the freely available saliency models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.