Climate change and increased anthropogenic activities are expected to elevate the potential of introducing nonindigenous species (NIS) into the Arctic. Yet, the knowledge base needed to identify gaps and priorities for NIS research and management is limited. Here, we reviewed primary introduction events to each ecoregion of the marine Arctic realm to identify temporal and spatial patterns, likely source regions of NIS, and the putative introduction pathways. We included 54 introduction events representing 34 unique NIS. The rate of NIS discovery ranged from zero to four species per year between 1960 and 2015. The Iceland Shelf had the greatest number of introduction events (n = 14), followed by the Barents Sea (n = 11), and the Norwegian Sea (n = 11). Sixteen of the 54 introduction records had no known origins. The majority of those with known source regions were attributed to the Northeast Atlantic and the Northwest Pacific, 19 and 14 records, respectively. Some introduction events were attributed to multiple possible pathways. For these introductions, vessels transferred the greatest number of aquatic NIS (39%) to the Arctic, followed by natural spread (30%) and aquaculture activities (25%). Similar trends were found for introductions attributed to a single pathway. The phyla Arthropoda and Ochrophyta had the highest number of recorded introduction events, with 19 and 12 records, respectively. Recommendations including vector management, horizon scanning, early detection, rapid response, and a pan‐Arctic biodiversity inventory are considered in this paper. Our study provides a comprehensive record of primary introductions of NIS for marine environments in the circumpolar Arctic and identifies knowledge gaps and opportunities for NIS research and management. Ecosystems worldwide will face dramatic changes in the coming decades due to global change. Our findings contribute to the knowledge base needed to address two aspects of global change—invasive species and climate change.
Uptake and discharge of ballast water by ocean-going ships contribute to the worldwide spread of aquatic invasive species, with negative impacts on the environment, economies, and public health. The International Ballast Water Management Convention aims at a global answer. The agreed standards for ballast water discharge will require ballast water treatment. Systems based on various physical and/or chemical methods were developed for on-board installation and approved by the International Maritime Organization. Most common are combinations of high-performance filters with oxidizing chemicals or UV radiation. A well-known problem of oxidative water treatment is the formation of disinfection by-products, many of which show genotoxicity, carcinogenicity, or other long-term toxicity. In natural biota, genetic damages can affect reproductive success and ultimately impact biodiversity. The future exposure towards chemicals from ballast water treatment can only be estimated, based on land-based testing of treatment systems, mathematical models, and exposure scenarios. Systematic studies on the chemistry of oxidants in seawater are lacking, as are data about the background levels of disinfection by-products in the oceans and strategies for monitoring future developments. The international approval procedure of ballast water treatment systems compares the estimated exposure levels of individual substances with their experimental toxicity. While well established in many substance regulations, this approach is also criticised for its simplification, which may disregard critical aspects such as multiple exposures and long-term sub-lethal effects. Moreover, a truly holistic sustainability assessment would need to take into account factors beyond chemical hazards, e.g. energy consumption, air pollution or waste generation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.