Exsolution lamellae of garnet in clinopyroxene and orthopyroxene porphyroclasts from garnet pyroxenites in the Moldanubian zone were studied to elucidate the pressure-temperature conditions of the exsolution process and to reconstruct the burial and exhumation path of ultramafic rocks in the Variscan orogen. The porphyroclasts occur in a fine-grained matrix with metamorphic fabrics, which consists of clinopyroxene and small amounts of garnet, orthopyroxene and amphibole. The clinopyroxene porphyroclasts contain garnet + orthopyroxene lamellae as well as ilmenite rods that have orientation parallel to (100) planes of the porphyroclasts. Orthopyroxene porphyroclasts host garnet and clinopyroxene lamellae, which show the same lattice preferred orientation. In both cases, lamellar orthopyroxene, clinopyroxene and garnet were partially replaced by secondary amphibole. Composition of exsolution phases and that of host pyroxene were reintegrated according to measured modal proportions and demonstrate that the primary pyroxene was enriched in Al and contained 8-11 mol.% Tschermak components. Conventional thermobarometry and thermodynamic modelling on the reintegrated pyroxene indicate that primary clinopyroxene and orthopyroxene megacrysts crystallized at 1300-1400°C and 2.2-2.5 GPa. Unmixing and exsolution of garnet and a second pyroxene phase occurred in response to cooling and pressure increase before the peak pressure of 4.5-5.0 GPa was reached at 1100°C. This scenario is consistent with a burial of hot upper-mantle ultramafics into a cold subcratonic environment and subsequent exhumation through 900°C and 2.2-3.3 GPa, when the pyroxenites would have partially recrystallized during tectonic incorporation into eclogites and felsic granulites.
Anisotropy of magnetic susceptibility (AMS) is regularly applied as a tool to infer structural analysis of deformation and flow in rocks, particularly, with low anisotropy. AMS integrates the magnetic signature of crystallographic and shape preferred orientation of all mineral grains present in the rock microstructure. Those preferred orientations result from multiple processes affecting the rock during its evolution, therefore the desirable AMS-strain relationship is not straightforward. Here we show that due to localization of deformation, AMS is indirectly dependent on the magnitude and character of deformation. In order to decipher the AMS-strain relationship, AMS studies should be accompanied by microstructural analyses combined with numerical modelling of magnetic fabric. A small-scale shear zone produced by single deformation event was studied. The resultant AMS fabric is “inverse” due to the presence of Fe-dolomite and controlled by calcite and dolomite crystallographic preferred orientations. The localized deformation resulted in the angular deviation between macroscopic and magnetic fabric in the shear zone, systematically increasing with increasing strain. This is a result of the presence of microstructural subfabrics of coarse porphyroclasts and fine-grained recrystallized matrix produced by localization.The localization of deformation is a multiscale and widespread process that should be considered whenever interpreting AMS in deformed rocks and regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.