This paper presents a precise macromodel of a signal-phase meter, which allows continuous phase measurement during simulation. It has been developed as a support tool during the design process of a signal-conditioning circuit for incremental position encoders. The development of a signal conditioning circuit requires precise measurements of small signal phases, amplitudes and offsets using the analog/digital circuit simulator. The phase measurement cannot be performed directly with a simulator, therefore an appropriate macro-model is needed for a circuit simulator. The structure of the signal-phase meter is based on the conventional signal-phase measuring method and is intended for the measuring of a cosine-signal phase with a known frequency. It recommends that the time variations of an input signal's parameters (amplitude, phase, frequency, and offset voltage) are slow and small as possible. Rapid change of a signal's parameters decreases the simulation result's accuracy. A macro-model's precision mainly depends on the chosen parameters for the macro-model and for the simulation. We show that with the proposed meter's model, the phase angle can be measured with an accuracy of more than ±0,02%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.