A novel cytochrome P450, CYP53A15, was identified in the pathogenic filamentous ascomycete Cochliobolus lunatus. The protein, classified into the CYP53 family, was capable of para hydroxylation of benzoate. Benzoate is a key intermediate in the metabolism of aromatic compounds in fungi and yet basically toxic to the organism. To guide functional analyses, protein structure was predicted by homology modeling. Since many naturally occurring antifungal phenolic compounds are structurally similar to CYP53A15 substrates, we tested their putative binding into the active site of CYP53A15. Some of these compounds inhibited CYP53A15. Increased antifungal activity was observed when tested in the presence of benzoate. Some results suggest that CYP53A15 O-demethylation activity is important in detoxification of other antifungal substances. With the design of potent inhibitors, CYP53 enzymes could serve as alternative antifungal drug targets.
The interaction between disrupted lipid homeostasis and immune response is implicated in the pathogenesis of several diseases, but the molecular bridges between the major players are still a matter of controversy. Our systemic study of the inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) in the livers of mice exposed to 20-h cytokine/fasting for the first time shows that TNF-alpha interferes with adaptation to fasting and activates harmful proatherogenic pathways, partially through interaction with the insulin-Insig-sterol regulatory element binding protein (Srebp) signaling pathway. In addition to the increased expression of acute-phase inflammatory genes, the most prominent alterations represent modified lipid homeostasis observed on the gene expression and metabolite levels. These include reduction of HDL-cholesterol, increase of LDL-cholesterol, and elevated expression of cholesterogenic genes, accompanied by increase of potentially harmful precholesterol metabolites and suppression of cholesterol elimination through bile acids, likely by farnesoid X receptor-independent mechanisms. On the transcriptional level, a shift from fatty oxidation toward fatty acid synthesis is observed. The concept of the influence of TNF-alpha on the Srebp regulatory network, followed by downstream effects on sterol metabolism, is novel. Observed acute alterations in lipid metabolism are in agreement with chronic disturbances found in patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.