Regular exercise ameliorates motor symptoms in Parkinson’s disease (PD). Here, we aimed to provide evidence that exercise brings additional benefits to the whole-body metabolism and skeletal muscle molecular and functional characteristics, which might help to explain exercise-induced improvements in the clinical state. 3-months supervised endurance/strength training was performed in early/mid-stage PD patients and age/gender-matched individuals (n = 11/11). The effects of exercise on resting energy expenditure (REE), glucose metabolism, adiposity, and muscle energy metabolism (31P-MRS) were evaluated and compared to non-exercising PD patients. Two muscle biopsies were taken to determine intervention-induced changes in fiber type, mitochondrial content, and expression of genes related to muscle energy metabolism, as well as proliferative and regenerative capacity. Exercise improved the clinical disability score (MDS-UPDRS), bradykinesia, balance, walking speed, REE, and glucose metabolism and increased muscle expression of energy sensors (AMPK). However, the exercise-induced increase in muscle mass/strength, mitochondrial content, type II fiber size, and postexercise phosphocreatine (PCr) recovery (31P-MRS) were found only in controls. Nevertheless, MDS-UPDRS was associated with muscle AMPK and mechano-growth factor (MGF) expression. Improvements in fasting glycemia were positively associated with muscle function and the expression of Sirt1 and Cox7a1, and the parameters of fitness/strength were positively associated with the expression of MyHC2, MyHC7, and MGF. Moreover, reduced bradykinesia was associated with better muscle metabolism (maximal oxidative capacity and postexercise PCr recovery; 31P-MRS). Exercise training improved the clinical state in early/mid-stage Parkinson’s disease patients, including motor functions and whole-body metabolism. Although the adaptive response to exercise in PD was different from that of controls, exercise-induced improvements in the PD clinical state were associated with specific adaptive changes in muscle functional, metabolic, and molecular characteristics.Clinical Trial Registration, identifier NCT02253732.
Information regarding the aerobic power on canoe slalom performance is scares. Moreover, the comparison of maximum oxygen uptake (VO2max) via specific and non-specific ergometer for slalom kayakers may improve training prescription and controlling over Olympic cycles. Lastly, it is still unknown to what extent the VO2max delimitate the high performance in this sport. To test this perspective, a highly qualified sample is desired. In overall statistics, Slovakian athletes gathered 14 Olympic medals over the last sixteen years. Therefore, the main aim of this study is to compare the aerobic power of Olympic medallists and Non-Olympic Slovakian kayakers via specific and non-specific evaluations from Beijing 2008 to Rio 2016 Summer Olympic Games. Forty-two male canoe slalom athletes from Slovak national team were evaluated between the years 2006 and 2016. Slovakian athletes were tested for specific (i.e. paddling ergometer) and non-specific (i.e. treadmill) incremental protocols for VO2max determination. Over the last three Summer Olympic Games, the VO2max of Slovakian Olympic medallists was consistently lower than most of the Slovakian team. Moreover, disregarding the medallist characteristic or the moment, Slovakian kayakers presented higher VO2max on treadmill (57.7±6.8 mL . kg -1. min -1 ) when compared to paddle ergometer (46.9±6.5 mL . kg -1. min -1 ) (p=0.000; ES=1.6). Based on the collected data over the last ten years, we suggest that although aerobic power may play a relevant and indirect role on performance of slalom kayakers, does not delimitate the high performance in this sport.
This study aimed to compare the aerobic power (treadmill running) and muscle power (bench press and bench pull) of Junior/U23 paddlers from Slovakia who won medals in international championships with that of those who did not take the podium. Forty-three Slovak Junior/U23 paddlers (sprint = 24, medalists = 8, non-medalists = 16; slalom = 19, medalists = 11, non-medalists = 8) were tested in 2018 and 2019 after the world championships. The maximal oxygen uptake (VO2max) and the velocity at maximal oxygen uptake (vVO2max) were determined by the incremental running protocol (0% slope and 1 km⋅h–1 increments every minute until volitional exhaustion). Mean maximal power from the entire concentric phase was recorded during bench press and bench pull exercises by the validated TENDO weightlifting analyzer. No interaction was obtained between medal and canoe discipline for VO2max (p = 0.069, F = 3.495), vVO2max (p = 0.552, F = 0.361) and absolute (bench press: p = 0.486, F = 0.495; bench pull: p = 0.429, F = 0.640) or relative (bench press: p = 0.767, F = 0.089; bench pull: p = 0.696, F = 0.155) mean maximal power. Conversely, a significant effect for the medal on the bench press (absolute p = 0.017, F = 6.170; relative p = 0.043, F = 4.384) and the bench pull (absolute p = 0.041, F = 4.470) mean maximal power were observed. Our study indicates the absolute mean power on the bench press as a prerequisite for success in international Junior/U23 championships of slalom and sprint canoeing. However, the mean power on bench pull seems to have a deeper influence on sprint paddlers when compared to slalom athletes. Regarding the aerobic power, the data from the treadmill testing did not reveal outcomes between medalists and non-medalists. This result can be associated with the lack of specificity of the incremental treadmill testing for canoeing, and future studies are encouraged to propose specific protocols to compare the aerobic power of medalists and non-medalists in international slalom and sprint championships.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.