Common reed (Phragmites australis) has high biomass production and is primarily subjected to decomposition processes affected by multiple factors. To predict litter decomposition dynamics in intermittent lakes, it is critical to understand how communities of fungi, as the primary decomposers, form under different habitat conditions. This study reports the shotgun metagenomic sequencing of the initial fungal communities on common reed leaves decomposing under different environmental conditions. We demonstrate that a complex network of fungi forms already on the plant persists into the decomposition phase. Phragmites australis leaves contained at least five fungal phyla, with abundant Ascomycota (95.7%) and Basidiomycota (4.1%), identified as saprotrophs (48.6%), pathotrophs (22.5%), and symbiotrophs (12.6%). Most of the correlations between fungi in fresh and decomposing leaves were identified as co-occurrences (positive correlations). The geographic source of litter and leaf age did not affect the structure and diversity of fungal communities. Keystone taxa were mostly moisture-sensitive. Our results suggest that habitat has a strong effect on the formation of the fungal communities through keystone taxa. Nevertheless, it can also alter the proportions of individual fungal groups in the community through indirect effects on competition between the fungal taxa and their exploitation of favourable conditions.
Lake Cerknica is an intermittent wetland ecosystem with extreme water level fluctuations. It hosts extensive reed stands that have colonized different habitat types. Two different stands were compared: a lake stand not directly influenced by the intermittent River Stržen and a riparian stand near River Stržen. Reed productivity (growth and assimilate allocation) was monitored for these reed stand types over 13 years (2007–2019), and this measurement was compared to monthly water levels and air temperatures. Reeds from the lake reed stand were significantly shorter with a lower shoot density, overall biomass production, and ratio of flowering plants. A correlation analysis revealed stronger and more numerous significant correlations between environmental and reed productivity parameters for the lake reed stand compared to the riparian reed stand. The variabilities of the growth and assimilate allocation parameters in the lake reed stand were both mostly explained by the combined water levels for June and July, which explained 47% and 52% of the variability, respectively. The most influential temperatures were in May, which explained 29% and 19% of the variability of growth and assimilate allocation parameters, respectively. For the riparian reed stand, water levels and temperatures out of the vegetation season appeared more important. Therefore, habitats with permanent water are more suitable for reeds than those with fluctuating water. However, fluctuating water conditions are expected to become more common due to climate change.
The vines Echinocystis lobata and Parthenocissus quinquefolia are spreading over the natural vegetation in riparian zones, which may significantly affect riparian vegetation properties and the quality of litter for aquatic organisms. We examined leaf morphological, biochemical and optical traits of these invasive alien species, each paired with its host, the willows Salix caprea and S. fragilis, respectively. The vines altered the host radiation environment and the amount of photosynthetic pigments. Both vines had significantly higher specific leaf area and lower leaf tissue density compared to the willows, even though the leaves of P. quinquefolia were significantly thicker. Leaf optical properties varied significantly between vines and willows in some spectral regions. Compared to the willows, the vines reflected less light as UV, and more as green, and transmitted more light as green, yellow and red. The overgrowth of the willows with vines affected the reflectance of the willow leaves. Redundancy analysis of the relationships between leaf biochemical traits and reflectance spectra showed that chlorophyll a, anthocyanins, and UVB- and UVA-absorbing substances explained 45% of the reflectance spectra variability, while analysis with morphological traits revealed that specific leaf area, leaf thickness and upper cuticle thickness explained 43%. For leaf transmittance, UVB- and UVA-absorbing substances, carotenoids and anthocyanins explained 53% of the transmittance spectra variability, while analysis with morphological traits revealed that specific leaf area explained 51%. These data show that invasive alien vines can be discerned from each other and their hosts by their spectral signatures. In addition, the differences in the leaf functional traits between the vines and their hosts indicate significant differences in the quality of the plant litter entering the river.
In proso millet, water shortage reduced leaf silicon, calcium, phosphorus, and sulphur levels, and ambient ultraviolet radiation reinforced this effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.