Antibody fragments (Fab's) represent important structure for creating new therapeutics. Compared to full antibodies Fab' fragments possess certain advantages, including higher mobility and tissue penetration, ability to bind antigen monovalently and lack of fragment crystallizable (Fc) region-mediated functions such as antibody-dependent cell mediated cytotoxicity (ADCC) or complement-dependent cytotoxicity (CDC). The main drawback for the use of Fab's in clinical applications is associated with their short half-life in vivo, which is a consequence of no longer having the Fc region. To exert meaningful clinical effects, the half-life of Fab's need to be extended, which has been achieved by postproduction chemical attachment of polyethylene glycol (PEG) chain to protein using PEGylation technology. The most suitable approach employs PEG-maleimide attachment to cysteines, either to the free hinge cysteine or to C-terminal cysteines involved in interchain disulfide linkage of the heavy and light chain. Hence, protocols for mono-PEGylation of Fab via free cysteine in the hinge region and di-PEGylation of Fab via interchain disulfide bridge are provided in this chapter.
A new PEGylation reagent enabling selective modification of free thiol groups is described in this article. The reagent was synthesized by attaching linear polyethylene glycol (PEG) N-hydroxysuccinimide to selenocystamine. The reaction was very fast, resulting in over 95% conversion yield. The active group of this new PEG-Se reagent is a diselenide, reacting with thiols via thiol/diselenide exchange reaction. Recombinant human granulocyte colony-stimulating factor (rhG-CSF) with an unpaired cysteine at the position 18 (Cys18) was used as a model protein. It was comparatively PEGylated with the new PEG-Se reagent, as well as with commercially available maleimide (PEG-Mal) and ortho-pyridyl disulfide (PEG-OPSS) PEG reagents. The highest PEGylation yield was obtained with PEG-Mal, followed by PEG-OPSS and PEG-Se. The reaction rates of PEG-Mal and PEG-Se were comparable, while the reaction rate of PEG-OPSS was lower. Purified monoPEGylated rhG-CSF conjugates were characterized and compared. Differences in activity, stability, and in vivo performance were observed, although all conjugates contained a 20 kDa PEG attached to the Cys18. Minor conformational changes were observed in the conjugate prepared with PEG-Mal. These changes were also reflected in low in vitro biological activity and aggregate formation of the maleimide conjugate. The conjugate prepared with PEG-Se had the highest in vitro biological activity, while the conjugate prepared with PEG-OPSS had the best in vivo performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.