BackgroundWe present the potential of inclusion bodies (IBs) as a protein delivery method for polymeric filamentous proteins. We used as cell factory a strain of E. coli, a conventional host organism, and keratin 14 (K14) as an example of a complex protein. Keratins build the intermediate filament cytoskeleton of all epithelial cells. In order to build filaments, monomeric K14 needs first to dimerize with its binding partner (keratin 5, K5), which is then followed by heterodimer assembly into filaments.ResultsK14 IBs were electroporated into SW13 cells grown in culture together with a “reporter” plasmid containing EYFP labeled keratin 5 (K5) cDNA. As SW13 cells do not normally express keratins, and keratin filaments are built exclusively of keratin heterodimers (i.e. K5/K14), the short filamentous structures we obtained in this study can only be the result of: a) if both IBs and plasmid DNA are transfected simultaneously into the cell(s); b) once inside the cells, K14 protein is being released from IBs; c) released K14 is functional, able to form heterodimers with EYFP-K5.ConclusionsSoluble IBs may be also developed for complex cytoskeletal proteins and used as nanoparticles for their delivery into epithelial cells.
As an in vitro model system, patient-derived epidermolysis bullosa simplex keratinocytes have had an immense impact on what we know today about keratin filament function and their role in disease development. In the absence of gene therapy, screening compound libraries for new or better drugs is another approach to improve existing treatments for genodermatoses. However in this study, we report of the potential pitfalls when using this type of cell lines as a "reporter" system. When cell lines with different genetic backgrounds are being used in cell-based assays, the greatest obstacle is to determine the most appropriate culture conditions (i.e., the composition of medium, number of cells plated and number of days in culture). We demonstrate how culture conditions can greatly interfere with the cellular response in cell-based assays (cell proliferation, metabolic activity and migration), potentially also giving rise to misleading data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.