In recent years, coated cemented carbides have often been the first choice for a wide variety of tool inserts and applications. Its success as a cutting tool material arises from the unique combination of wear resistance and toughness, and its ability to be formed into complex shapes. The structure obtained by sintering nanoparticle powders provides a significant improvement in product properties, such as higher cutting speeds, lower tool tolerances, and longer service life. In this study, a multi-layered gradient coating, deposited on nanostructured cemented carbides by plasma-assisted chemical vapor deposition (PACVD) was investigated with emphasis on its wear and exploitation properties. TiBN coating was deposited on nanostructured cemented carbide samples with the addition of 5 wt% Co, 10 wt% Co and 15 wt% Co. The samples were consolidated by one cycle hot isostatic pressing (HIP) technique. Complex architecture built of TiN and TiB2 gradient multilayer sequence block was deposited on each type of substrate. Wear resistance of the obtained samples was determined by erosion wear testing and dry sliding wear testing (ball-on-flat test). The friction coefficients of ~0.22 obtained for coated samples by the ball-on-flat test show a decrease in friction when compared to uncoated samples values of ~0.32. The absence of coating rupture was confirmed by wear track depth measurements showing a wear trace depth of ~1.2 μm. Exploitation properties i.e., tool life determination of samples was obtained using single-point turning tool test and compared to commercial cutting tool insert type K10 tested under the same conditions. All the conducted tests show excellent wear and exploitation properties of the newly developed TiBN coating under chosen conditions, including cutting speed, vc = 200 m/min, depth of cut, ap = 1 mm, and feed, fn = 0.2 mm. Coated WC-Co samples with 15 wt% Co, having withstood 15 min of machining with flank wear trace size less than 0.3 mm, suggest significant improvement when compared to trace size of 0.56 mm obtained for K10 commercial cutting insert.
The plasma-assisted chemical vapor deposition (PACVD) technique has shown many advantages in applications, where thin coatings with superior wear properties are demanded, especially for geometrically complex parts. In this study, multilayered gradient TiBN coatings that were deposited on nanostructured cemented carbides by the PACVD method were investigated. Nanostructured samples of cemented carbides with the addition of 5 and 15 wt.% Co were sintered by the hot isostatic pressing, sinter-HIP technique. Surface preparation was conducted on samples in order to enable maximum coating adhesion. Tests that were conducted on produced samples aimed to investigate the mechanical and physical properties of coated samples. These tests included nanoindentation, surface layer characterization, and coating adhesion evaluation while using the Rockwell and scratch test. The obtained results confirmed that the PACVD process can be utilized for applying thin hard coatings to nanostructured cemented carbides that are produced by the sinter HIP process, resulting in a base material/ coating system that exhibits excellent physical and mechanical properties. The results presented in this paper give a valuable contribution to the research of TiBN coating systems and their potential for application under heavy wear conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.