Performance decline in Li-excess cathodes is generally attributed to structural degradation at the electrode-electrolyte interphase, including transition metal migration into the lithium layer and oxygen evolution into the electrolyte. Reactions between these new surface structures and/or reactive oxygen species in the electrolyte can lead to the formation of a cathode electrolyte interphase (CEI) on the surface of the electrode, though the link between CEI composition and the performance of Li-excess materials is not well understood. To bridge this gap in understanding, we use solid-state nuclear magnetic resonance (SSNMR) spectroscopy, dynamic nuclear polarization (DNP) NMR, and electrochemical impedance spectroscopy (EIS) to assess the chemical composition and impedance of the CEI on Li 2 RuO 3 as a function of state of charge and cycle number. We show that the CEI that forms on Li 2 RuO 3 when cycled in carbonate-containing electrolytes is similar to the solid electrolyte interphase (SEI) that has been observed on anode materials, containing components such as PEO, Li acetate, carbonates, and LiF. The CEI composition deposited on the cathode surface on charge is chemically distinct from that observed upon discharge, supporting the notion of crosstalk between the SEI and the CEI, with Li +-coordinating species leaving the CEI during delithiation. Migration of the outer CEI combined with the accumulation of poor ionic conducting components on the static inner CEI may contribute to the loss of performance over time in Li-excess cathode materials.
We improved the optical quality and stability of an exfoliated monolayer (ML) MoSe 2 and chemical vapor deposition (CVD)-grown WS 2 MLs by encapsulating and sealing them with both top and bottom few-layer h-BN, as tested by subsequent hightemperature annealing up to 873 K and photoluminescence (PL) measurements. These transition-metal dichalcogenide (TMD) MLs remained stable up to this maximum temperature, as seen visually. After the heating/cooling cycle, the integrated photoluminescence (PL) intensity at 300 K in the MoSe 2 ML was ∼4 times larger than that before heating and that from exciton and trion PL in the analogous WS 2 ML sample was ∼14 times and ∼2.5 times larger at 77 K and the exciton peak was ∼9.5 times larger at 300 K. This is attributed to the reduction of impurities, the lateral expulsion of contamination leading to clean and atomically flat surfaces, and the sealing provided by the h-BN layers that prevents the diffusion of molecules such as trace O 2 and H 2 O to the TMD ML. Stability and optical performance are much improved compared to that in earlier work using top h-BN only, in which the WS 2 ML PL intensity decreased even for an optimal gas environment. This complete encapsulation is particularly promising for CVD-grown TMD MLs because they have relatively more charge and other impurities than do exfoliated MLs. These results open a new route for improving the optical properties of TMD MLs and their performance and applications both at room and higher temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.