Business models of network service providers are undergoing an evolving transformation fueled by vertical customer demands and technological advances such as 5G, Software Defined Networking (SDN), and Network Function Virtualization (NFV). Emerging scenarios call for agile network services consuming network, storage, and compute resources across heterogeneous infrastructures and administrative domains. Coordinating resource control and service creation across interconnected domains and diverse technologies becomes a grand challenge. Research and development efforts are being devoted to enabling orchestration processes to automate, coordinate, and manage the deployment and operation of network services. In this survey, we delve into the topic of Network Service Orchestration (NSO) by reviewing the historical background, relevant research projects, enabling technologies, and standardization activities. We define key concepts and propose a taxonomy of NSO approaches and solutions to pave the way to a common understanding of the various ongoing efforts towards the realization of diverse NSO application scenarios. Based on the analysis of the state of affairs, we present a series of open challenges and research opportunities, altogether contributing to a timely and comprehensive survey on the vibrant and strategic topic of network service orchestration.
We report herein a new, practical, and economic synthesis of the phosphodiesterase inhibitor Rolipram on a multigram scale as well as the synthesis of new 4-aryl pyrrolidones and beta-aryl-gamma-amino butyric acids (GABA derivatives) employing an efficient Heck-Matsuda arylation of 3-pyrroline with aryldiazonium tetrafluoroborates. Racemic Rolipram was resolved into its enantiomers using chiral simulated moving bed chromatography having the low-cost microcrystalline cellulose triacetate as a chiral stationary phase.
-The two enantiomers that constitute a racemate have different activities when employed as pharmaceuticals. Due to this fact, fully recognized today, the pharmaceutical industry has been forced to market pure enantiomers instead of the racemic mixture whenever a chiral compound is involved. The simulated moving bed (SMB) is a chromatographic process that, unlike traditional HPLC systems, operates continuously without losing the enantiomeric purity of the outlet streams. The present work describes the enantioseparation of the anesthetic ketamine in a semipreparative-scale SMB unit. The chiral stationary phase employed was the microcrystalline cellulose triacetate. The outlet streams were analyzed by an on-line system, composed by an UV/VIS meter and a polarimeter, and also by HPLC. The analysis indicated purity values up to 100% for the stream of interest and up to 97.7% for the other stream.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.