Although increasing evidence confirms neuropsychiatric manifestations associated mainly with severe COVID-19 infection, long-term neuropsychiatric dysfunction (recently characterized as part of “long COVID-19” syndrome) has been frequently observed after mild infection. We show the spectrum of cerebral impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, ranging from long-term alterations in mildly infected individuals (orbitofrontal cortical atrophy, neurocognitive impairment, excessive fatigue and anxiety symptoms) to severe acute damage confirmed in brain tissue samples extracted from the orbitofrontal region (via endonasal transethmoidal access) from individuals who died of COVID-19. In an independent cohort of 26 individuals who died of COVID-19, we used histopathological signs of brain damage as a guide for possible SARS-CoV-2 brain infection and found that among the 5 individuals who exhibited those signs, all of them had genetic material of the virus in the brain. Brain tissue samples from these five patients also exhibited foci of SARS-CoV-2 infection and replication, particularly in astrocytes. Supporting the hypothesis of astrocyte infection, neural stem cell–derived human astrocytes in vitro are susceptible to SARS-CoV-2 infection through a noncanonical mechanism that involves spike–NRP1 interaction. SARS-CoV-2–infected astrocytes manifested changes in energy metabolism and in key proteins and metabolites used to fuel neurons, as well as in the biogenesis of neurotransmitters. Moreover, human astrocyte infection elicits a secretory phenotype that reduces neuronal viability. Our data support the model in which SARS-CoV-2 reaches the brain, infects astrocytes, and consequently, leads to neuronal death or dysfunction. These deregulated processes could contribute to the structural and functional alterations seen in the brains of COVID-19 patients.
Summary Objective To investigate whether mood disorders (MD) and anxiety disorders (AD) are associated with seizure control in patients with mesial temporal lobe epilepsy (MTLE). We compared patients without any current psychiatric disorder, patients with current MD and/or AD, patients with subsyndromic depression episodes (SSDE) and anxiety episodes (SSAE), and patients with family psychiatric history. Methods In a cross‐sectional study, we included 144 consecutive patients with MTLE (82 pharmacoresistant and 62 treatment‐responsive patients). Every patient underwent a psychiatric evaluation including the Structured Clinical Interview for DSM‐IV (Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition) Axis I (SCID‐I), Beck Depression Inventory (BDI), Beck Anxiety Inventory (BAI), Neurological Disorders Depression Inventory for Epilepsy (NDDI‐E), and Interictal Dysphoric Disorder Inventory (IDDI). Patients were divided into four groups: PsychNeg (G1, n = 61), current SSDE and SSAE (G2, n = 26), Current MD or AD (G3, n = 25), and current mixed MD/AD (G4, n = 32). Results Among patients with pharmacoresistant MTLE, 68.3% (56/82) experienced symptoms of depression and/or anxiety (G2, G3, and G4) (odds ratio [OR] 2.8, 95% confidence interval [CI] 1.41–5.53, p < 0.01). Patients with mixed MD/AD (G4, n = 24/32) were more likely to have pharmacoresistant MTLE (OR 4.04, 95% CI 1.57–10.42, p < 0.01) than psychiatric asymptomatic patients (G1, n = 26/61), and their seizure frequency was significantly higher (p < 0.01). Positive family psychiatric history was more frequent in pharmacoresistant patients (n = 27/82, OR 2.28, 95% CI 1.02–5.05, p = 0.04). Finally, 31.6% of patients with MD and or AD were not receiving psychiatric treatment. Significance Identification of comorbid MD/AD and of family psychiatric history is of the essence in patients with MTLE, as they appear to be associated with worse seizure control.
COVID-19 patients may exhibit neuropsychiatric and/or neurological symptoms. We found that anxiety and cognitive impairment are manifested by 28-56% of SARS-CoV-2-infected individuals with mild or no respiratory symptoms and are associated with altered cerebral cortical thickness. Using an independent cohort, we found histopathological signs of brain damage in 19% of individuals who died of COVID-19. All of the affected brain tissues exhibited foci of SARS-CoV-2 infection, particularly in astrocytes. Infection of neural stem cell-derived astrocytes changed energy metabolism, altered key proteins and metabolites used to fuel neurons and for biogenesis of neurotransmitters, and elicited a secretory phenotype that reduces neuronal viability. Our data support the model where SARS-CoV-2 reaches the brain, infects astrocytes and triggers neuropathological changes that contribute to the structural and functional alterations in the brain of COVID-19 patients.
COVID-19 patients may exhibit neuropsychiatric and neurological symptoms. We found that anxiety and cognitive impairment are manifested by 28-56% of SARS-CoV-2-infected individuals with mild respiratory symptoms and are associated with altered cerebral cortical thickness. Using an independent cohort, we found histopathological signs of brain damage in 25% of individuals who died of COVID-19. All of the affected brain tissues exhibited foci of SARS-CoV-2 infection and replication, particularly in astrocytes. Infection of neural stem cell-derived astrocytes changed energy metabolism, altered key proteins and metabolites used to fuel neurons and for biogenesis of neurotransmitters, and elicited a secretory phenotype that reduces neuronal viability. Our data support the model where SARS-CoV-2 reaches the brain, infects astrocytes and triggers neuropathological changes that contribute to the structural and functional alterations in the brain of COVID-19 patients.
Objective:Inflammation plays an essential role in epilepsy. Studies indicate that cytokines and neurotrophic factors can act in neuroexcitability and epileptogenesis. We aimed to investigate the association between plasma inflammatory and neurotrophic markers, seizure frequency, and chronic epilepsy subtypes.Methods:We studied 446 patients with epilepsy and 166 healthy controls. We classified patients according to etiology and seizure frequency. We measured plasma levels of interleukin-1 (IL-1), IL-2, IL-4, IL-6, IL-10, IL-17, interferon-γ (IFNγ), tumor necrosis factor α (TNFα), soluble TNF receptor 1 (sTNFr1), sTNFr2, brain-derived neurotrophic factor (BDNF), neurotrophic factor 3 (NT3), NT4/5, ciliary neurotrophic factor (CNTF), nerve growth factor (NGF), and glial cell line-derived neurotrophic factor (GDNF) by enzyme-linked immunosorbent assay or cytometric bead array. Results:The plasma levels of BDNF, NT3, NGF, and sTNFr2 were higher, whereas IL-2, IL-4, IL-6, IL-10, IL-17, IFNγ, TNFα, CNTF, and sTNFr1 were lower in patients than controls. IL1, GDNF, and NT4/5 were similar between groups. These markers did not correlate with age, sex, and epilepsy duration.The molecule sTNFr2 was the best marker to discriminate patients from controls (area under the curve = .857), also differing between patients with frequent and infrequent seizures.Significance:This large cohort confirmed that patients with epilepsy have abnormal levels of plasma inflammatory and neurotrophic markers independent of the underlying etiology. Plasma level of sTNFr2 was related to seizure frequency and discriminated people with or without epilepsy with good accuracy, making it a potential biomarker for epilepsy and seizure burden.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.