This paper presents a method based on Artificial Neural Networks that uses signals captured from conventional cell phone accelerometers to identify user's displacement patterns. The patterns are classified according to the location of the device (pocket, hand or console) and the way the user moves (using a car or walking). Such method enables the identification of risky situations that can lead to accidents, such as driving or walking using a smartphone. Tests show that the proposed method is able to identify one of 10 possible transport modes with an average hit rate of 95%. Resumo: Este artigo apresenta um método baseado em Redes Neurais Artificiais que, utilizando sinais capturados a partir de acelerômetros de telefones celulares convencionais,é capaz de identificar padrões de deslocamento do usuário definidos pela localização do dispositivo (no bolso, na mão ou no console) e pela forma como o usuário se desloca (utilizando um carro ou a pé). Tal método possibilita a identificação de situações de risco que podem culminar em acidentes, como dirigir ou andar utilizando um smartphone. Os testes mostram que o método propostoé capaz de identificar uma dentre 10 possíveis classes de transporte com uma taxa de acerto médio de 95%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.