The South American tomato pinworm, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae), is an invasive pest difficult to control. Insecticide application is quite common and remains the prevalent control method particularly in open-field cultivation systems. As a result, insecticide resistance to many chemical classes of insecticides has been described both in South America and in Europe. The development of insecticide resistance is relatively fast in this species, and the main mechanisms involved are altered target-site sensitivity and/or enhanced detoxification, depending on the chemical class. However, insecticide resistance mechanisms do not differ between South America and Europe and are mainly due to simple genotype variations leading to high levels of resistance. The presence of resistance alleles at low frequency, especially against newer chemistry, is of major concern, as they tend to spread with the invasions making tomato pinworm particularly difficult to control. The monitoring methods and management programmes developed for the species benefited from the pro-activity of the Insecticide Resistance Action Committee and its country groups, particularly in Brazil and Spain. Bioassay methods were developed, resistance monitoring activities initiated and resistance management guidance was provided. The implementation of integrated control programmes and appropriate resistance management strategies as part of such programs is of utmost importance to keep tomato pinworm infestations under economic damage thresholds, thus guaranteeing sustainable yields.
The introduction of an agricultural pest species into a new environment is a potential threat to agroecosystems of the invaded area. The phytosanitary concern is even greater if the introduced pest’s phenotype expresses traits that will impair the management of that species. The invasive tomato borer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae), is one such species and the characterization of the insecticide resistance prevailing in the area of origin is important to guide management efforts in new areas of introduction. The spinosad is one the main insecticides currently used in Brazil for control of the tomato borer; Brazil is the likely source of the introduction of the tomato borer into Europe. For this reason, spinosad resistance in Brazilian populations of this species was characterized. Spinosad resistance has been reported in Brazilian field populations of this pest species, and one resistant population that was used in this study was subjected to an additional seven generations of selection for spinosad resistance reaching levels over 180,000-fold. Inheritance studies indicated that spinosad resistance is monogenic, incompletely recessive and autosomal with high heritability (h 2 = 0.71). Spinosad resistance was unstable without selection pressure with a negative rate of change in the resistance level ( = −0.51) indicating an associated adaptive cost. Esterases and cytochrome P450-dependent monooxygenases titration decreased with spinosad selection, indicating that these detoxification enzymes are not the underlying resistance mechanism. Furthermore, the cross-resistance spectrum was restricted to the insecticide spinetoram, another spinosyn, suggesting that altered target site may be the mechanism involved. Therefore, the suspension of spinosyn use against the tomato borer would be a useful component in spinosad resistance management for this species. Spinosad use against this species in introduced areas should be carefully monitored to prevent rapid selection of high levels of resistance and the potential for its spread to new areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.