BACKGROUND AND PURPOSE Epigenetic modifications are thought to play an important role in the neurobiology of depression. Antidepressant treatment induces histone acetylation in the hippocampus, which is associated with transcriptional activation, whereas stress increases DNA methylation, which is associated with transcriptional repression. Because the specific involvement of DNA methylation in the regulation of depressive‐like behaviours is not yet known, we have investigated the effects induced by systemic or intra‐hippocampal administration of inhibitors of DNA methyltransferase (DNMT) in rats submitted to a range of behavioural tests. EXPERIMENTAL APPROACH Rats received i.p. injections of 5‐aza‐2‐deoxycytidine (5‐azaD, 0.1–0.8 mg·kg−1), 5‐azacytidine (5‐azaC, 0.4–3.2 mg·kg−1), imipramine (15 mg·kg−1) or vehicle and were submitted to the forced swimming test (FST) or open field test (OFT). Other groups of rats received intra‐hippocampal injection of DNMT inhibitors. KEY RESULTS Systemic administration of DNMT inhibitors induced a dose‐dependent antidepressant‐like effect, which was followed by decreased DNA methylation and increased brain‐derived neurotrophic factor (BDNF) levels in the hippocampus. Hippocampal inhibition of DNA methylation induced similar behavioural effects. No treatment induced any locomotor effects in the OFT. Antidepressant‐like effects of 5‐azaD were confirmed in mice submitted to the FST or the tail suspension test. CONCLUSIONS AND IMPLICATIONS Systemic, as well as hippocampal, inhibition of DNA methylation induced antidepressant‐like effects. These effects could be associated with increased hippocampal expression of BDNF. Our data give further support to the hypothesis that DNA methylation is an important epigenetic mechanism involved in the development of depressive‐like behaviours.
Photobacterium damselae subsp. damselae is considered to be an emerging pathogen of marine fish of importance in aquaculture, with a notable increase in its geographical distribution during the last several years. In this study, we carried out for the first time to our knowledge a genetic and pathobiological characterization of 14 strains isolated from sea bass (Dicentrarchus labrax) reared in the Southeastern Black Sea, where high mortalities were observed at two aquaculture farms during the summer and autumn of 2011. Heterogeneity was evidenced among strains in phenotypical traits, such as sucrose fermentation, motility, and hemolysis. Although 11 of 14 isolates were hemolytic, we found that all of the isolates lacked the pPHDD1 virulence plasmid that encodes the phospholipase-D damselysin (Dly) and the pore-forming toxin PhlyP, two hemolysins previously reported to constitute major virulence factors for turbot. Subsequent PCR and sequencing analyses demonstrated that the 11 hemolytic isolates harbored a complete hlyA ch gene, a chromosome I-borne gene that encodes HlyA ch hemolysin, whereas the three nonhemolytic isolates contained hlyA ch pseudogenes caused by insertion sequence elements. Virulence challenges with two representative strains revealed that, albeit less virulent than the pPHDD1-harboring strain RM-71, the plasmidless hlyA ch -positive and hlyA chnegative Black Sea isolates were pathogenic for sea bass. A phylogenetic analysis based on the toxR gene sequence uncovered a greater diversity in the isolates, indicating that the presence of this pathogen in the Black Sea was not caused by the introduction and spread of a single virulent clone but by the proliferation of different clones. IMPORTANCEThe geographical distribution of marine bacterial pathogens is undergoing a worldwide increase. In particular, bacteria of the group vibrios are increasingly being isolated as the causative agents of disease in novel species of cultivated fish in areas where they had not been previously reported. Here we characterize for the first time to our knowledge a collection of isolates of the fish and human pathogen Photobacterium damselae subsp. damselae from diseased sea bass reared in the Black Sea. We uncovered great genetic diversity in the Black Sea isolates of this pathogen, suggesting a multiclonal origin. We also demonstrate for the first time that these isolates bear pathogenic potential for sea bass cultures by virulence challenges. P hotobacterium damselae subsp. damselae is a marine bacterium of the family Vibrionaceae that is recognized as a pathogen for a wide variety of aquatic animals, including fish, molluscs, and crustaceans. In addition, it is a pathogen of concern for humans, as it is capable of causing fatal infections (1). Most of the reported infections in humans originated from wounds inflicted during the handling of fish and fishing tools or from exposure to marine animals or seawater. Notably, it is a primary pathogen of fish species of economical importance in aquaculture. During ...
The RstB histidine kinase of the two component system RstAB positively regulates the expression of damselysin (Dly), phobalysin P (PhlyP) and phobalysin C (PhlyC) cytotoxins in the fish and human pathogen Photobacterium damselae subsp. damselae , a marine bacterium of the family Vibrionaceae . However, the function of the predicted cognate response regulator RstA has not been studied so far, and the role of the RstAB system in other cell functions and phenotypes remain uninvestigated. Here, we analyzed the effect of rstA and rstB mutations in cell fitness and in diverse virulence-related features. Both rstA and rstB mutants were severely impaired in virulence for sea bream and sea bass fish. Mutants in rstA and rstB genes were impaired in hemolysis and in Dly-dependent phospholipase activity but had intact PlpV-dependent phospholipase and ColP-dependent gelatinase activities. rstA and rstB mutants grown at 0.5% NaCl exhibited impaired swimming motility, enlarged cell size and impaired ability to separate after cell division, whereas at 1% NaCl the mutants exhibited normal phenotypes. Mutation of any of the two genes also impacted tolerance to benzylpenicillin. Notably, rstA and rstB mutants showed impaired secretion of a number of type II secretion system (T2SS)-dependent proteins, which included the three major cytotoxins Dly, PhlyP and PhlyC, as well as a putative delta-endotoxin and three additional uncharacterized proteins which might constitute novel virulence factors of this pathogenic bacterium. The analysis of the T2SS-dependent secretome of P. damselae subsp. damselae also led to the identification of RstAB-independent potential virulence factors as lipoproteins, sialidases and proteases. The RstAB regulon included plasmid, chromosome I and chromosome II-encoded genes that showed a differential distribution among isolates of this subspecies. This study establishes RstAB as a major regulator of virulence and diverse cellular functions in P. damselae subsp. damselae .
The marine pathogenic bacterium Photobacterium damselae subsp. damselae causes septicemia in marine animals and in humans. The pPHDD1 plasmid-encoded hemolysins damselysin (Dly) and phobalysin P (PhlyP), and the chromosome-encoded hemolysin phobalysin C (PhlyC) constitute its main virulence factors. However, the mechanisms by which expression of these three hemolysins is regulated remain unknown. Here we report the isolation of a mini-Tn10 transposon mutant which showed a strong impairment in its hemolytic activity. The transposon disrupted a putative sensor histidine kinase gene vda_000600 (rstB), which together with vda_000601 (rstA) is predicted to encode a putative two-component regulatory system. This system showed to be homologous to the Vibrio cholerae CarSR/VprAB and Escherichia coli RstAB systems. Reconstruction of the mutant by allelic exchange of rstB showed equal impairment in hemolysis, and complementation with a plasmid expressing rstAB restored hemolysis to wild-type levels. Remarkably, we demonstrated by promoter expression analyses that the reduced hemolysis in the rstB mutant was accompanied by a strong decrease in transcription activities of the three hemolysin genes dly (damselysin), hlyApl (phobalysin P) and hlyAch (phobalysin C). Thus, RstB, encoded in the small chromosome, regulates plasmid and chromosomal virulence genes. We also found that reduced expression of the three virulence genes correlated with a strong decrease in virulence in a sea bass model, demonstrating that RstB constitutes a master regulator of the three P. damselae subsp. damselae hemolysins and plays critical roles in the pathogenicity of this bacterium. This study represents the first evidence of a direct role of a RstAB-like system in the regulation of bacterial toxins.
subsp. causes vibriosis in a variety of marine animals, including fish species of importance in aquaculture. It also may cause wound infections in humans that can progress into a fatal outcome. Two major virulence factors are encoded within the large conjugative plasmid pPHDD1: the phospholipase-D damselysin (Dly) and the pore-forming toxin Phobalysin P (PhlyP). The two toxins exert hemolytic and cytolytic activity in a synergistic manner. Albeit PhlyP has close homologues in many species, it has unique features that differentiate it from related toxins. Dly phospholipase constitutes a singular trait of subsp. among the , although related toxins are found in members of the Fish farm outbreaks can also be caused by plasmidless strains. Such observation led to the characterization of two ubiquitous, chromosome-encoded toxins with lesser cytolytic activity: the pore forming-toxin Phobalysin C (PhlyC) and the phospholipase-hemolysin PlpV. Special attention deserves the high genetic diversity of this pathogen, with a number of strain-specific features including the cell envelope polysaccharide synthesis clusters. Fish outbreaks are likely caused by multiclonal populations which contain both plasmidless and pPHDD1-harbouring isolates, and not by well-adapted clonal complexes. Still, among such a genetic heterogeneity, it is feasible to identify conserved weak points in the biology of this bacterium: the two-component regulatory system RstAB (CarSR) was found to be necessary for maximal production of virulence factors and its inactivation severely impaired virulence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.