In early May 2022, the first worldwide monkeypox virus (MPXV) outbreak was reported, with different clinical aspects from previously studied human monkeypox infections. Despite monkeypox medical importance, much of its biological aspects remain to be further investigated. In the present work, we evaluated ultrastructural aspects of MPXV asynchronous infections in Vero cells by transmission electron microscopy (TEM). The viral strain was isolated from a male patient infected during the 2022 outbreak. TEM analysis showed: (i) adhered intracellular mature virus particles before entry of the host cell; (ii) a reorganization of the rough endoplasmic reticulum cisternae into the so-called "mini-nuclei" structure associated with genome replication; and (iii) noticeably different sites within the viral factory presenting granular or fibrillar aspects. We also observed viral crescents, different MPXV particle morphotypes, and cellular alterations induced by infection, such as changes in the cytoskeleton structure and multimembrane vesicles abundance. Taken together, to the best of our knowledge, these results revealed for the first-time ultrastructural aspects of different steps of the MPXV cycle.
Synthetic 1,3‐bis(aryloxy)propan‐2‐amines have been shown in previous studies to possess several biological activities, such as antifungal and antiprotozoal. In the present study, we describe the antibacterial activity of new synthetic 1,3‐bis(aryloxy)propan‐2‐amines against Gram‐positive pathogens (Streptococcus pyogenes, Enterococcus faecalis and Staphylococcus aureus) including Methicillin–resistant S. aureus strains. Our compounds showed minimal inhibitory concentrations (MIC) in the range of 2.5–10 μg/ml (5.99–28.58 μM), against different bacterial strains. The minimal bactericidal concentrations found were similar to MIC, suggesting a bactericidal mechanism of action of these compounds. Furthermore, possible molecular targets were suggested by chemical similarity search followed by docking approaches. Our compounds are similar to known ligands targeting the cell division protein FtsZ, Quinolone resistance protein norA and the Enoyl‐[acyl‐carrier‐protein] reductase FabI. Taken together, our data show that synthetic 1,3‐bis(aryloxy)propan‐2‐amines are active against Gram‐positive bacteria, including multidrug–resistant strains and can be a promising lead in the development of new antibacterial compounds for the treatment of these infections.
Dengue is a tropical disease caused by the dengue virus (DENV), with an estimate of 300 million new cases every year. Due to the limited vaccine efficiency and absence of effective antiviral treatment, new drug candidates are urgently needed. DENV NS3‐NS2B protease complex is essential for viral post‐translational processing and maturation, and this enzyme has been extensively studied as a relevant drug target. Crystal structures often underestimate NS3‐NS2B flexibility, whereas they can adopt different conformational states depending on the bound substrate. We conducted molecular dynamics simulations (∼30 μs) with a non‐ and covalently bound inhibitor to understand the conformational changes in the DENV‐3 NS3‐NS2B complex. Our results show that the open‐closing movement of the protease exposes multiple druggable subpockets that can be investigated in later drug discovery efforts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.