The objectives of this study were to evaluate the effects of daily top-dressing (individually feeding on the top of the total mixed ration) with rumen-protected methionine (RPM) from 30 ± 3 until 126 ± 3 Days in milk on productive and reproductive performance in lactating dairy cows. A total of 309 lactating dairy Holstein cows (138 primiparous and 171 multiparous) were randomly assigned to treatment diets containing either RPM (21.2 g of RPM + 38.8 g of dried distillers grain; 2.34% Methionine [Met] of metabolizable protein [MP]) or Control (CON; 60 g of dried distillers grain; 1.87% Met of MP). Plasma amino acids were evaluated at the time of artificial insemination (AI) and near pregnancy diagnosis. Milk production and milk composition were evaluated monthly. Pregnancy was diagnosed on Day 28 (by Pregnancy-specific protein B [PSPB]), 32, 47, and 61 (by ultrasound) and sizes of embryonic and amniotic vesicle were determined by ultrasound on Day 33 after AI. Feeding RPM increased plasma Met at 6, 9, 12, and 18 hours after top-dressing with a peak at 12 hours (52.4 vs 26.0 μM; P < 0.001) and returned to basal by 24 hours. Cows fed RPM had a small increase in milk protein percentage (3.08 vs 3.00%; P = 0.04) with no differences on milk yield and milk protein yield. Additionally, in multiparous cows, RPM feeding increased milk protein (3.03 vs 2.95%; P = 0.05) and fat (3.45 vs 3.14%; P = 0.01) percentages, although no effects were observed in primiparous cows. In multiparous cows fed RPM, pregnancy loss was lower between Days 28 to 61 (19.6 [10/51] vs. 6.1% [3/49]; P = 0.03) or between Days 32 to 61 (8.9 [4/45] vs. 0 [0/0] %; P = 0.03), although, there was no effect of treatment on pregnancy loss in primiparous cows. Consistent with data on pregnancy loss, RPM feeding increased embryonic abdominal diameter (P = 0.01) and volume (P = 0.009) and amniotic vesicle volume (P = 0.04) on Day 33 of pregnancy in multiparous cows but had no effect on embryonic size in primiparous cows. Thus, the increase in plasma Met concentrations after feeding RPM was sufficient to produce a small increase in milk protein percentage and to improve embryonic size and pregnancy maintenance in multiparous cows. Further studies are needed to confirm these responses and understand the biological mechanisms that underlie these responses as well as the timing and concentrations of circulating Met that are needed to produce this effect.
Increasing methionine availability in dairy cow diets during the first third of lactation may enhance their performance and health. The aim of this study was to determine the effect of supplementing rumen-protected methionine (Smartamine® M, SM) in a lactation diet with protein and energy levels calculated according to the literature. Seventy-six multiparous Holstein cows (39.1 ± 6.8 kg of milk/d and 65 ± 28 DIM) were assigned to 1 of 2 dietary treatments (38/treatment) according to a randomized complete block design with a 2-wk (covariate) and 10-wk experimental period. Treatments were a basal diet (CON; 3.77 Lys:1Met); and CON + 23 g SM (2.97 Lys:1 Met). Individual milk samples were taken every 2 weeks to determine milk composition. Blood was collected from 24 cows on d+30 d to measure plasma AA levels. Body weight and body condition score (BCS) were measured at the beginning and the end of the experiment. The SM diet promoted higher milk yield (41.7 vs. 40.1 kg/d; P = 0.03). Energy-corrected milk yield (41.0 vs. 38.0 kg/d), milk protein yield (1.30 vs. 1.18 kg/d), milk protein (3.14% vs. 2.97%) and casein (2.39% vs. 2.28%) were also different (P < 0.01) as well as milk fat yield (1.42 vs. 1.29 kg/d; P = 0.02). A trend (P = 0.06) for higher milk fat % (3.41% vs. 3.21%) was observed. Both diets resulted in similar body weight, but CON-fed cows tended (P = 0.08) to have higher BCS. Higher plasma methionine levels were determined with SM compared with CON (29.6 vs. 18.4 μM; P < 0.01), but lysine and histidine were not different. Dietary supplementation of RPM improved productive performance by increasing milk yield and milk components yields, suggesting better dietary AA utilization when Met levels are adjusted in Lys-adequate lactation diets.
Objectives were to evaluate the effect of feeding rumen-protected methionine (RPM) in pre-and postpartum total mix ration (TMR) on lactation performance and plasma AA concentrations in dairy cows. A total of 470 multiparous Holstein cows [235 cows at University of Wisconsin (UW) and 235 cows at Cornell University (CU)] were enrolled approximately 4 wk before parturition, housed in close-up dry cow and replicated lactation pens. Pens were randomly assigned to treatment diets (pre-and postpartum, respectively): UW control (CON) diet = 2.30 and 2.09% of Met as percentage of metabolizable protein (MP) and RPM diet = 2.83 and 2.58% of Met as MP; CU CON = 2.22 and 2.19% of Met as percentage of MP, and CU RPM = 2.85 and 2.65% of Met as percentage of MP. Treatments were evaluated until 112 ± 3 d in milk (DIM). Milk yield was recorded daily. Milk samples were collected at wk 1 and 2 of lactation, and then every other week, and analyzed for milk composition. For lactation pens, dry matter intake (DMI) was recorded daily. Body weight and body condition score were determined from 4 ± 3 DIM and parturition until 39 ± 3 and 49 DIM, respectively. Plasma AA concentrations were evaluated within 3 h after feeding during the periparturient period [d −7 (±4), 0, 7 (±1), 14 (±1), and 21 (±1); n = 225]. In addition, plasma AA concentrations were evaluated (every 3 h for 24 h) after feeding in cows at 76 ± 8 DIM (n = 16) and within 3 h after feeding in cows at 80 ± 3 DIM (n = 72). The RPM treatment had no effect on DMI (27.9 vs. 28.0 kg/d) or milk yield (48.7 vs. 49.2 kg/d) for RPM and CON, respectively. Cows fed the RPM treat-ment had increased milk protein concentration (3.07 vs. 2.95%) and yield (1.48 vs. 1.43 kg/d), and milk fat concentration (3.87 vs. 3.77%), although milk fat yield did not differ. Plasma Met concentrations tended to be greater for cows fed RPM at 7 d before parturition (25.9 vs. 22.9 µM), did not differ at parturition (22.0 vs. 20.4 µM), and were increased on d 7 (31.0 vs. 21.2 µM) and remained greater with consistent concentrations until d 21 postpartum (d 14: 30.5 vs. 19.0 µM; d 21: 31.0 vs. 17.8 µM). However, feeding RPM decreased Leu, Val, Asn, and Ser (d 7, 14, and 21) and Tyr (d 14). At a later stage in lactation, plasma Met was increased for RPM cows (34.4 vs. 16.7 µM) consistently throughout the day, with no changes in other AA. Substantial variation was detected for plasma Met concentration (range: RPM = 8.9-63.3 µM; CON = 7.8-28.8 µM) among cows [coefficient of variation (CV) > 28%] and within cow during the day (CV: 10.5-27.1%). In conclusion, feeding RPM increased plasma Met concentration and improved lactation performance via increased milk protein production.
Maintenance of the corpus luteum (CL) during pregnancy is essential for continuing the elevated circulating progesterone (P4) that is required to maintain pregnancy. The mechanisms that protect the CL during early pregnancy when the non-pregnant animal would typically undergo CL regression have been extensively investigated. It is clear uterine prostaglandin F2α (PGF) causes regression of the CL in non-pregnant ruminants and that maintenance of the CL during early pregnancy is dependent upon secretion of interferon-tau (IFNT) from the elongating embryo. A number of specific mechanisms appear to be activated by IFNT. Most studies indicate that there is an inhibition of oxytocin-induced secretion of uterine PGF. There is also evidence for increased resistance to PGF action, perhaps due to secretion of PGE2 and PGE1 or direct endocrine actions of circulating IFNT. These mechanisms occur concurrently and each may help to maintain the CL during the first month of pregnancy. However, during the second month of pregnancy, IFNT is no longer secreted by the embryo. Attachment of the embryo to the uterus and subsequent placentome development have been linked to silencing of expression from the IFNT gene. In addition, there is some evidence that oxytocin responsiveness of the uterus returns during the second month of pregnancy leading to substantial basal secretion of PGF and perhaps PGF pulses. There is also no evidence that the CL during the second month of pregnancy is resistant to the actions of PGF as observed during the first month. Thus, this manuscript attempts to compare the mechanisms that maintain the CL during the first and second months of pregnancy in ruminants and provides a new, speculative, physiological model for maintenance of the CL during month two of pregnancy that is distinct from the previously-described mechanisms that maintain the CL during the first month of pregnancy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.