In this study, we systematically investigate the impact of class imbalance on classification performance of convolutional neural networks (CNNs) and compare frequently used methods to address the issue. Class imbalance is a common problem that has been comprehensively studied in classical machine learning, yet very limited systematic research is available in the context of deep learning. In our study, we use three benchmark datasets of increasing complexity, MNIST, CIFAR-10 and ImageNet, to investigate the effects of imbalance on classification and perform an extensive comparison of several methods to address the issue: oversampling, undersampling, two-phase training, and thresholding that compensates for prior class probabilities. Our main evaluation metric is area under the receiver operating characteristic curve (ROC AUC) adjusted to multi-class tasks since overall accuracy metric is associated with notable difficulties in the context of imbalanced data. Based on results from our experiments we conclude that (i) the effect of class imbalance on classification performance is detrimental; (ii) the method of addressing class imbalance that emerged as dominant in almost all analyzed scenarios was oversampling; (iii) oversampling should be applied to the level that completely eliminates the imbalance, whereas the optimal undersampling ratio depends on the extent of imbalance; (iv) as opposed to some classical machine learning models, oversampling does not cause overfitting of CNNs; (v) thresholding should be applied to compensate for prior class probabilities when overall number of properly classified cases is of interest.
View this article online at wileyonlinelibrary.com.
Recent analysis identified distinct genomic subtypes of lower-grade glioma tumors which are associated with shape features. In this study, we propose a fully automatic way to quantify tumor imaging characteristics using deep learning-based segmentation and test whether these characteristics are predictive of tumor genomic subtypes.We used preoperative imaging and genomic data of 110 patients from 5 institutions with lower-grade gliomas from The Cancer Genome Atlas. Based on automatic deep learning segmentations, we extracted three features which quantify two-dimensional and three-dimensional characteristics of the tumors. Genomic data for the analyzed cohort of patients consisted of previously identified genomic clusters based on IDH mutation and 1p/19q co-deletion, DNA methylation, gene expression, DNA copy number, and microRNA expression. To analyze the relationship between the imaging features and genomic clusters, we conducted the Fisher exact test for 10 hypotheses for each pair of imaging feature and genomic subtype. To account for multiple hypothesis testing, we applied a Bonferroni correction. P-values lower than 0.005 were considered statistically significant.We found the strongest association between RNASeq clusters and the bounding ellipsoid volume ratio (p < 0.0002) and between RNASeq clusters and margin fluctuation (p < 0.005).In addition, we identified associations between bounding ellipsoid volume ratio and all tested molecular subtypes (p < 0.02) as well as between angular standard deviation and RNASeq cluster (p < 0.02). In terms of automatic tumor segmentation that was used to generate the quantitative image characteristics, our deep learning algorithm achieved a mean Dice coefficient of 82% which is comparable to human performance.
Background: Management of thyroid nodules may be inconsistent between different observers and time consuming for radiologists. An artificial intelligence system that uses deep learning may improve radiology workflow for management of thyroid nodules.Purpose: To develop a deep learning algorithm that uses thyroid US images to decide whether a thyroid nodule should undergo a biopsy and to compare the performance of the algorithm with the performance of radiologists who adhere to American College of Radiology (ACR) Thyroid Imaging Reporting and Data System (TI-RADS). Materials and Methods:In this retrospective analysis, studies in patients referred for US with subsequent fine-needle aspiration or with surgical histologic analysis used as the standard were evaluated. The study period was from August 2006 to May 2010. A multitask deep convolutional neural network was trained to provide biopsy recommendations for thyroid nodules on the basis of two orthogonal US images as the input. In the training phase, the deep learning algorithm was first evaluated by using 10-fold cross-validation. Internal validation was then performed on an independent set of 99 consecutive nodules. The sensitivity and specificity of the algorithm were compared with a consensus of three ACR TI-RADS committee experts and nine other radiologists, all of whom interpreted thyroid US images in clinical practice.Results: Included were 1377 thyroid nodules in 1230 patients with complete imaging data and conclusive cytologic or histologic diagnoses. For the 99 test nodules, the proposed deep learning algorithm achieved 13 of 15 (87%: 95% confidence interval [CI]: 67%, 100%) sensitivity, the same as expert consensus (P . .99) and higher than five of nine radiologists. The specificity of the deep learning algorithm was 44 of 84 (52%; 95% CI: 42%, 62%), which was similar to expert consensus (43 of 84; 51%; 95% CI: 41%, 62%; P = .91) and higher than seven of nine other radiologists. The mean sensitivity and specificity for the nine radiologists was 83% (95% CI: 64%, 98%) and 48% (95% CI: 37%, 59%), respectively. Conclusion:Sensitivity and specificity of a deep learning algorithm for thyroid nodule biopsy recommendations was similar to that of expert radiologists who used American College of Radiology Thyroid Imaging and Reporting Data System guidelines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.