The tandem repeats of trinucleotide sequences are present in many human genes and their expansion in specific genes causes a number of hereditary neurological disorders. The normal function of triplet repeats in transcripts is barely known and the role of expanded RNA repeats in the pathogenesis of Triplet Repeat Expansion Diseases needs to be more fully elucidated. Here we have described the structures formed by transcripts composed of AAG, CAG, CCG, CGG and CUG repeats, which were determined by chemical and enzymatic structure probing. With the exception of the repeated AAG motif, all studied repeats form hairpin structures and these hairpins show several alternative alignments. We have determined the molecular architectures of these co-existing hairpin structures by using transcripts with GC-clamps which imposed single alignments of hairpins. We have provided experimental evidence that CCUG repeats implicated in myotonic dystrophy type 2 also form hairpin structures with properties similar to that composed of the CUG repeats.
The CAG repeat expansions that occur in translated regions of specific genes can cause human genetic disorders known as polyglutamine (poly-Q)-triggered diseases. Huntington’s disease and spinobulbar muscular atrophy (SBMA) are examples of these diseases in which underlying mutations are localized near other trinucleotide repeats in the huntingtin (HTT) and androgen receptor (AR) genes, respectively. Mutant proteins that contain expanded polyglutamine tracts are well-known triggers of pathogenesis in poly-Q diseases, but a toxic role for mutant transcripts has also been proposed. To gain insight into the structural features of complex triplet repeats of HTT and AR transcripts, we determined their structures in vitro and showed the contribution of neighboring repeats to CAG repeat hairpin formation. We also demonstrated that the expanded transcript is retained in the nucleus of human HD fibroblasts and is colocalized with the MBNL1 protein. This suggests that the CAG repeats in the HTT mRNA adopt ds-like RNA conformations in vivo. The intracellular structure of the CAG repeat region of mutant HTT transcripts was not sufficiently stable to be protected from cleavage by an siRNA targeting the repeats and the silencing efficiency was higher for the mutant transcript than for its normal counterpart.
Ribonuclease Dicer functions in cells to excise microRNAs from their precursors and process long double-stranded RNAs into short interfering RNAs. We show that transcripts containing long hairpin structures composed of CNG repeats are another class of Dicer targets. The cellular levels of transcripts from mutant genes involved in triplet repeat expansion diseases such as myotonic dystrophy type 1, Huntington's disease, and spinocerebellar ataxia type 1 are under Dicer control. The Dicer-induced downregulation of the mutant transcript in myotonic dystrophy cells is accompanied by the downregulation of transcripts containing long complementary repeats. Short CUG repeats generated from long repeat hairpins act as siRNAs and use the RNA interference pathway to trigger the downstream silencing effects. We demonstrate that synthetic oligonucleotides composed of repeats are highly specific in the silencing of mutant transcripts containing complementary repeats and may be considered as potential therapeutic agents.
Tandem repeats of various trinucleotide motifs are present in the human transcriptome, but the functions of these regular sequences, which likely depend on the structures they form, are still poorly understood. To gain new insight into the structural and functional properties of triplet repeats in RNA, we have performed a biochemical structural analysis of the complete set of triplet repeat transcripts, each composed of a single sequence repeated 17 times. We show that these transcripts fall into four structural classes. The repeated CAA, UUG, AAG, CUU, CCU, CCA, and UAA motifs did not form any higher order structure under any analyzed conditions. The CAU, CUA, UUA, AUG, and UAG repeats are ordered according to their increasing tendency to form semistable hairpins. The repeated CGA, CGU, and all CNG motifs form fairly stable hairpins, whereas AGG and UGG repeats fold into stable G-quadruplexes. The triplet repeats that formed the most stable structures were characterized further by biophysical methods. UV-monitored structure melting revealed that CGG and CCG repeats form, respectively, the most and least stable hairpins of all CNG repeats. Circular dichroism spectra showed that the AGG and UGG repeat quadruplexes are formed by parallel RNA strands. Furthermore, we demonstrated that the different susceptibility of various triplet repeat transcripts to serum nucleases can be explained by the sequence and structural features of the tested RNAs. The results of this study provide a comprehensive structural foundation for the functional analysis of triplet repeats in transcripts.Trinucleotide repeats (TNRs) 4 belong to a family of microsatellite sequences also known as short tandem repeats or simple sequence repeats. TNRs are present in both prokaryotic and eukaryotic genomes and, similar to other microsatellites, show high mutation rates resulting in frequent length variability. Polymorphic TNRs are better tolerated than dinucleotide and tetranucleotide repeats in translated sequences because their length variation does not change the open reading frame.A recent survey of the human genome reference sequence showed that it harbors more than 32,000 tracts of uninterrupted TNR sequences composed of six or more repeated units. In annotated human exons, which account for less than 3% of the genomic sequence, there are as many as 1,030 TNR tracts (61). Some AT-rich TNR types, such as CTT, AAC, and AAT, are particularly underrepresented in exons, whereas GC-rich repeats (CGG, CAG, and CCG) are highly overrepresented, implying that these sequences have a functional significance. The AT-rich and GC-rich TNRs tend to localize preferentially in the 3Ј-UTR and 5Ј-UTR, respectively (1). About 60% of exonic TNRs are localized in the open reading frame. These coding repeats are primarily translated to the poly-Gln, polyAla, poly-Glu, and poly-Leu tracts. However, the amino acid coding property of TNRs is not the only feature for which these sequences are selected in exons. The other properties of TNR sequences that manifest thems...
Trinucleotide repeats (TNRs) are of interest in genetics because they are used as markers for tracing genotype–phenotype relations and because they are directly involved in numerous human genetic diseases. In this study, we searched the human genome reference sequence and annotated exons (exome) for the presence of uninterrupted triplet repeat tracts composed of six or more repeated units. A list of 32 448 TNRs and 878 TNR-containing genes was generated and is provided herein. We found that some triplet repeats, specifically CNG, are overrepresented, while CTT, ATC, AAC and AAT are underrepresented in exons. This observation suggests that the occurrence of TNRs in exons is not random, but undergoes positive or negative selective pressure. Additionally, TNR types strongly determine their localization in mRNA sections (ORF, UTRs). Most genes containing exon-overrepresented TNRs are associated with gene ontology-defined functions. Surprisingly, many groups of genes that contain TNR types coding for different homo-amino acid tracts associate with the same transcription-related GO categories. We propose that TNRs have potential to be functional genetic elements and that their variation may be involved in the regulation of many common phenotypes; as such, TNR polymorphisms should be considered a priority in association studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.