Pets play a crucial role in the development of human feelings, social life, and care. However, in the era of the prevailing global pandemic of COVID-19 disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), many questions addressing the routes of the virus spread and transmission to humans are dramatically emerging. Although cases of SARS-CoV-2 infection have been found in pets including dogs, cats, and ferrets, to date there is no strong evidence for pet-to-human transmission or sustained pet-to-pet transmission of SARS-CoV-2. However, an increasing number of studies reporting detection of SARS-CoV-2 in farmed minks raises suspicion of potential viral transmission from these animals to humans. Furthermore, due to the high susceptibility of cats, ferrets, minks and hamsters to COVID-19 infection under natural and/or experimental conditions, these animals have been extensively explored as animal models to study the SARS-CoV-2 pathogenesis and transmission. In this review, we present the latest reports focusing on SARS-CoV-2 detection, isolation, and characterization in pets. Moreover, based on the current literature, we document studies aiming to broaden the knowledge about pathogenicity and transmissibility of SARS-CoV-2, and the development of viral therapeutics, drugs and vaccines. Lastly, considering the high rate of SARS-CoV-2 evolution and replication, we also suggest routes of protection against the virus.
Salmonellosis is a global health problem, affecting approximately 1.3 billion people annually. Most of these cases are related to food contamination. However, although the majority of Salmonella serovars are pathogenic to humans, animals can be asymptomatic carriers of these bacteria. Nowadays, a wide range of animals is present in human households as pets, including reptiles, amphibians, dogs, cats, ornamental birds, and rodents. Pets contaminate the environment of their owners by shedding the bacteria intermittently in their feaces. In consequence, theyare thought to cause salmonellosis through pet-to-human transmission.Each Salmonella serovar has a different zoonotic potential, which is strongly regulated by stress factors such as transportation, crowding, food deprivation, or temperature. In this review, we summarize the latest reports concerning Salmonella-prevalence and distribution in pets as well as the risk factors and means of prevention of human salmonellosis caused by contact with their pets. Our literature analysis (based on PubMed and Google Scholar databases) is limited to the distribution of Salmonella serovars found in commonly owned pet species. We collected the recent results of studies concerning testing for Salmonella spp. in biological samples, indicating their prevalence in pets, with regard to clinical cases of human salmonellosis.
The prevailing COVID-19 pandemic has dramatically affected the mental health and well-being of individuals. This cross-sectional study aimed to assess the perceived fear of COVID-19 among older adults in Poland and identify subpopulations with the highest risk of potential mental health disorders. The study was conducted in November–December 2020 on 500 people aged ≥60 years (mean M = 67.9, standard deviation SD = 4.2). In order to collect information on participants’ characteristics and COVID-19-related information, they were asked to complete a questionnaire based on recorded telephone calls. Perceived fear of COVID-19 was measured using our generated and validated seven-item tool: “Scale of fear of COVID-19 infection”, which ranged from 7 to 35. Multiple linear regression was performed to identify factors associated with the perceived fear of COVID-19. Our results showed that the highest level of fear of COVID-19 infection was observed among women (p = 0.025) and patients taking anticoagulants (p = 0.004). Moreover, older adults with higher anxiety levels were more likely to be fearful of COVID-19 (according to the GAS-10 scale; p < 0.001). These findings may help policy makers and healthcare workers to adapt and implement better mental health strategies to help the elderly fight fear and anxiety during the prevailing pandemic.
WNK kinases autoactivate by autophosphorylation. Crystallography of the kinase domain of WNK1 phosphorylated on the primary activating site (pWNK1) in the presence of AMP-PNP reveals a well-ordered but inactive configuration. This new pWNK1 structure features specific and unique interactions of the phosphoserine, less hydration, and smaller cavities compared with those of unphosphorylated WNK1 (uWNK1). Because WNKs are activated by osmotic stress in cells, we addressed whether the structure was influenced directly by osmotic pressure. pWNK1 crystals formed in PEG3350 were soaked in the osmolyte sucrose. Suc-WNK1 crystals maintained X-ray diffraction, but the lattice constants and pWNK1 structure changed. Differences were found in the activation loop and helix C, common switch loci in kinase activation. On the basis of these structural changes, we tested for effects on in vitro activity of two WNKs, pWNK1 and pWNK3. The osmolyte PEG400 enhanced ATPase activity. Our data suggest multistage activation of WNKs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.