CERMINE is a comprehensive open-source system for extracting structured metadata from scientific articles in a born-digital form. The system is based on a modular workflow, whose loosely coupled architecture allows for individual component evaluation and adjustment, enables effortless improvements and replacements of independent parts of the algorithm and facilitates future architecture expanding. The implementations of most steps are based on supervised and unsupervised machine learning techniques, which simplifies the procedure of adapting the system to new document layouts and styles. The evaluation of the extraction workflow carried out with the use of a large dataset showed good performance for most metadata types, with the average F score of 77.5 %. CERMINE system is available under an open-source licence and can be accessed at http:// cermine.ceon.pl. In this paper, we outline the overall workflow architecture and provide details about individual steps implementations. We also thoroughly compare CERMINE to similar solutions, describe evaluation methodology and finally report its results. B Dominika Tkaczyk
Social networks are quickly becoming the primary medium for discussing what is happening around real-world events. The information that is generated on social platforms like Twitter can produce rich data streams for immediate insights into ongoing matters and the conversations around them. To tackle the problem of event detection, we model events as a list of clusters of trending entities over time. We describe a real-time system for discovering events that is modular in design and novel in scale and speed: it applies clustering on a large stream with millions of entities per minute and produces a dynamically updated set of events. In order to assess clustering methodologies, we build an evaluation dataset derived from a snapshot of the full Twitter Firehose and propose novel metrics for measuring clustering quality. Through experiments and system profiling, we highlight key results from the offline and online pipelines. Finally, we visualize a high profile event on Twitter to show the importance of modeling the evolution of events, especially those detected from social data streams.
Bibliographic references between scholarly publications contain valuable information for researchers and developers involved with digital repositories. They are indicators of topical similarity between linked texts, impact of the referenced document, and improve navigation in user interfaces of digital libraries. Consequently, several approaches to extraction, parsing and resolving said references have been proposed to date. In this paper we develop a methodology for evaluating parsing and matching algorithms and choosing the most appropriate one for a document collection at hand. We apply the methodology for evaluating reference parsing and matching module of the YADDA2 software platform.
During the process of citation matching links from bibliography entries to referenced publications are created. Such links are indicators of topical similarity between linked texts, are used in assessing the impact of the referenced document and improve navigation in the user interfaces of digital libraries. In this paper we present a citation matching method and show how to scale it up to handle great amounts of data using appropriate indexing and a MapReduce paradigm in the Hadoop environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.