Carbon nanomaterials such as nanotubes, nanoflakes/nanowalls, and graphene have been used as electron sources due to their superior field electron emission (FEE) characteristics. However, these materials show poor stability and short lifetimes, which prevent their use in practical device applications. The aim of this study was to find an innovative nanomaterial possessing both high robustness and reliable FEE behavior. Herein, a hybrid structure of self-organized multi-layered graphene (MLG)-boron doped diamond (BDD) nanowall materials with superior FEE characteristics was successfully synthesized using a microwave plasma enhanced chemical vapor deposition process. Transmission electron microscopy reveals that the as-prepared carbon clusters have a uniform, dense, and sharp nanowall morphology with sp diamond cores encased by an sp MLG shell. Detailed nanoscale investigations conducted using peak force-controlled tunneling atomic force microscopy show that each of the core-shell structured carbon cluster fields emits electrons equally well. The MLG-BDD nanowall materials show a low turn-on field of 2.4 V μm, a high emission current density of 4.2 mA cm at an applied field of 4.0 V μm, a large field enhancement factor of 4500, and prominently high lifetime stability (lasting for 700 min), which demonstrate the superiority of these materials over other hybrid nanostructured materials. The potential of these MLG-BDD hybrid nanowall materials in practical device applications was further illustrated by the plasma illumination behavior of a microplasma device with these materials as the cathode, where a low threshold voltage of 330 V (low threshold field of 330 V mm) and long plasma stability of 358 min were demonstrated. The fabrication of these hybrid nanowalls is straight forward and thereby opens up a pathway for the advancement of next-generation cathode materials for high brightness electron emission and microplasma-based display devices.
In this study, we have demonstrated the fabrication of novel materials called boron-doped carbon nanowalls (B:CNWs), which are characterized by remarkable electrochemical properties such as high standard rate constant (k°), low peak-to-peak separation value (ΔE) for the oxidation and reduction processes of the [Fe(CN)] redox system, and low surface resistivity. The B:CNW samples were deposited by the microwave plasma-assisted chemical vapor deposition (CVD) using a gas mixture of H/CH/BH and N. Growth results in sharp-edged, flat, and long CNWs rich in sp as well as sp hybridized phases. The achieved high values of k° (1.1 × 10 cm s) and ΔE (85 mV) are much lower compared to those of the glassy carbon or undoped CNWs. The enhanced electrochemical performance of the B:CNW electrode facilitates the simultaneous detection of DNA purine bases: adenine and guanine. Both separated oxidation peaks for the independent determination of guanine and adenine were observed by means of cyclic voltammetry or differential pulse voltammetry. It is worth noting that the determined sensitivities and the current densities were about 1 order of magnitude higher than those registered by other electrodes.
Carbon (sp3)‐on‐carbon (sp2) materials have the potential to revolutionize fields such as energy storage and microelectronics. However, the rational engineering and printing of carbon‐on‐carbon materials on flexible substrates remains a challenge in wearable electronics technology. This study demonstrates the scalable fabrication of flexible laser‐induced graphene (LIG)‐boron doped diamond nanowall (BDNW) hybrid nanostructures for microsupercapacitors. Direct laser writing on polyimide film is tuned by the presence of BDNW powder where an appreciable absorbance of the BDNWs at the CO2 laser wavelength enhances the local film temperature. The thermal shock due to laser irradiation produces graphitized and amorphous carbon at the diamond grain boundaries which increases the thermal and charge transfer capacity between the LIG–diamond interfaces. The samples are further treated with O2 plasma to tune the wettability or to improve the microsupercapacitor device performance. The outstanding electrical characteristics of graphene, exceptional electrochemical stability of diamond, and essential contributions of oxygen‐containing groups result in a remarkable charge storage capacity (18 mF cm−2 @ 10 mV s−1) and cyclic stability (98% retention after 10 000 cycles) outperforming most state‐of‐the‐art LIG‐based supercapacitors. Furthermore, despite extreme mechanical stress, these microsupercapacitors maintain their outstanding electrochemical properties, thus holding promise for high‐power, flexible/wearable electronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.