Standard deontic logic (SDL) is defined on the basis of possible world semantics and is a logic of alethic-deontic modalities rather than deontic modalities alone. The interpretation of the concepts of obligation and permission comes down exclusively to the logical value that a sentence adopts for the accessible deontic alternatives. Here, we set forth a different approach, this being a logic which additionally takes into consideration whether sentences stand in relation to the normative system or to the system of values under which we predicate the deontic qualifications. By taking this aspect into account, we arrive at a logical system which preserves laws proper to a deontic logic but where the standard paradoxes of deontic logic do not arise. It is a logic of strictly-deontic modalities DR.
Boolean connexive logic is an extension of Boolean logic that is closed under Modus Ponens and contains Aristotle’s and Boethius’ theses. According to these theses (i) a sentence cannot imply its negation and the negation of a sentence cannot imply the sentence; and (ii) if the antecedent implies the consequent, then the antecedent cannot imply the negation of the consequent and if the antecedent implies the negation of the consequent, then the antecedent cannot imply the consequent. Such a logic was first introduced by Jarmużek and Malinowski, by means of so-called relating semantics and tableau systems. Subsequently its modal extension was determined by means of the combination of possible-worlds semantics and relating semantics. In the following article we present axiomatic systems of some basic and modal Boolean connexive logics. Proofs of completeness will be carried out using canonical models defined with respect to maximal consistent sets.
One of the logic defined by Richard Epstein in a context of an analysis of subject matter relationship is Symmetric Relatedness Logic S. In the monograph [2] we can find some open problems concerning relatedness logic, a Post-style completeness theorem for logic S is one of them. Our paper introduces a solution of this metalogical issue.
proved that the normal logics K45, KB4 (= KB5), KD45 are determined by suitable classes of simplified Kripke frames of the form W, A , where A ⊆ W. In this paper, we extend this result. Firstly, we show that a modal logic is determined by a class composed of simplified frames if and only if it is a normal extension of K45. Furthermore, a modal logic is a normal extension of K45 (resp. KD45; KB4; S5) if and only if it is determined by a set consisting of finite simplified frames (resp. such frames with A = ∅; such frames with A = W or A = ∅; such frames with A = W). Secondly, for all normal extensions of K45, KB4, KD45 and S5, in particular for extensions obtained by adding the so-called "verum" axiom, Segerberg's formulas and/or their T-versions, we prove certain versions of Nagle's Fact (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.