This article presents the results of the optimization of steam generator control systems powered by mixtures of liquid fuels containing biofuels. The numerical model was based on the results of experimental research of steam generator operation in an open system. The numerical model is used to build control algorithms that improve performance, increase efficiency, reduce fuel consumption and increase safety in the full range of operation of the steam generator and the cogeneration system of which it is a component. In this research, the following parameters were monitored: temperature and pressure of the circulating medium, exhaust gas temperature, oxygen content in exhaust gas, percentage control of oil burner power. Two methods of controlling the steam generator were proposed: the classic one, using the PID regulator, and the advanced one, using artificial neural networks. The work shows how the model is adapted to the real system and the impact of the control algorithms on the efficiency of the combustion process. The example is considered for the implementation of advanced control systems in micro-, small- and medium-power cogeneration and trigeneration systems in order to improve their final efficiency and increase the profitability of implementation.
The measurement of stress in concrete structures is a complex issue. This paper presents a new measurement system called a self-acoustic system (SAS), which uses frequency measurements of acoustic waves to determine the condition of concrete structures. The SAS uses a positive feedback loop between ultrasonic heads, which causes excitation to a stable limit cycle. The frequency of this cycle is related to the propagation time of an acoustic wave, which directly depends on stresses in the test object. The coupling mechanism between acoustic wave propagation speed and stress is the elastoacoustic effect described in this paper. Thus, the proposed system enables the coupling between the limit cycle frequency and the stress degree of the concrete structure. This paper presents a machine learning algorithm to analyse the frequency spectrum of the SAS system. The proposed solution is a real-time classifier that enables online analysis of the frequency spectrum from the SAS system. With this approach, an autonomous system for stress condition identification of concrete structures is built and described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.