A series of 20 pentamidine analogs were prepared using 2 general Schemes that evaluated heteroatoms, sulfobenzene and alkanediamide groups in the aliphatic linker and methoxy substituents attached to the benzene rings for efficacy against the fungal pathogen, Pneumocystis carinii in an ATP bioassay. All but one of the 20 bisamidines reduced the ATP content of the P. carinii over the 72 hr of the assay period. The highest activities were associated with the lack of methoxy groups and the presence of the O, N and S heteroatoms. Activity (IC50) for compounds 1, 5, 6, 10 ranged from 1.1 to 2.13 µM. The compound 11 with similar activity (1.33 µM), bears a sulfobenzene group at a nitrogen in the aliphatic linker. The alkanediamide-linked bisbenzamidines showed a moderate inhibition of ATP. Generally, the inclusion of a heteroatom in the aliphatic linker and absence of methoxy groups at the benzene rings were associated with higher activities in this assay. Of note, most of the compounds had little to no cytotoxicity in mammalian cell cultures. Although not quite as potent as other pentamidine derivatives, these compounds hold promise for decreased side effects within the mammalian host.
The anti-protozoal drug pentamidine is active against opportunistic Pneumocystis pneumonia, but in addition has several other biological targets, including the NMDA receptor (NR). Here we describe the inhibitory potencies of 76 pentamidine analogs at 2 binding sites of the NR, the channel binding site labeled with [3H]MK-801 and the [3H]ifenprodil binding site. Most analogs acted weaker at the ifenprodil than at the channel site. The spermine-sensitivity of NR inhibition by the majority of the compounds was reminiscent of other long-chain dicationic NR blockers. The potency of the parent compound as NR blocker was increased by modifying the heteroatoms in the bridge connecting the 2 benzamidine moieties and also by integrating the bridge into a seven-membered ring. Docking of the 45 most spermine-sensitive bisbenzamidines to a recently described acidic interface between the N-terminal domains of GluN1 and GluN2B mediating polyamine stimulation of the NR revealed the domain contributed by GluN1 as the most relevant target.
Correction for ‘Development of highly active anti-Pneumocystis bisbenzamidines: insight into the influence of selected substituents on the in vitro activity’ by D. Maciejewska et al., Med. Chem. Commun., 2017, 8, 2003–2011.
X-ray diffraction analyses for new pentamidine analogs are presented: 1,4-bis(4-cyanobenzyl)piperazine (1) crystallizes in the triclinic space group () and 1,4-bis(4-amidinobenzyl)piperazine tetrahydrochloride tetrahydrate (2) in the monoclinic space group (P21/n) revealing a complex system of hydrogen bonds for (2).
Here we describe the potency of 21 pentamidine analogues against the fungal pathogen, , in an ATP bioluminescent assay with toxicity profiles in 2 mammalian cell lines. Reduction of two 5-methyl-1,2,4-oxadiazole rings was applied to the synthesis of acid-labile bisamidines. Anti- activity is discussed in the context of 3 groups of compounds depending on the main structural changes of the pentamidine lead structure. The groups include: 1) 1,4-bis(methylene)piperazine derivatives ; 2) alkanediamide derivatives; 3) alkane-derived bisbenzamidines . IC values of 18 compounds were lower than the IC of pentamidine. Four bisamidines were active at nanogram concentrations. Introduction of sulfur atoms in the alkane bridge, replacement of the amidino groups with imidazoline rings, or attachment of nitro or amino groups to the benzene rings is responsible for remarkable activity of the new leading structures. The vast majority of compounds, including four highly active ones, can be classified as mild or nontoxic to host cells. These compounds show promise as candidates for new anti- agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.