This paper presents an entirely new approach to the use of virtual reality (VR) in the educational process for the needs of Industry 4.0. It is based on the proposed comprehensive methodology, including the design, creation, implementation and evaluation of individual courses implemented in a VR environment. An essential feature of the new methodology is its universality and comprehensiveness. Thanks to that, it can be applied in such areas as higher education, aviation, automotive, shipbuilding, energy and many others. The paper also identifies the significant advantages and disadvantages of VR-based education that may determine its use scope and profile. In addition, on the basis of the proposed methodology, a model of a training station using VR technology has been developed to enable the realization of training classes in the field of firefighting activities that should be undertaken during the hazard arising from the operation of a numerically controlled production machine. Results of the conducted training using this station were also presented. The study showed the potential of training based on a virtual environment to improve participants’ skills and knowledge. The development and implementation of adequate courses in the VR environment can reduce costs and increase the safety and efficiency of employees’ performed activities.
Areas of experience allow for the acquisition and consolidation of both existing knowledge and skills. These are significant factors in the training of staff members for companies in the Industry 4.0 area. One of the currently available modern tools used in the teaching process is virtual reality (VR) technology. This technology, due to its high level of immersion and involvement of the different senses, and the need to focus on the performed activities, allows one to develop skills in solving various tasks and problems. The extended VR environment enables the creation of diverse teaching scenarios adapted to the needs of industry. This paper presents the possibility of building training scenarios in the field of digital techniques. The software solution, developed and presented by the authors, uses elements of computer game mechanics and is designed to familiarize students with the idea of digital circuits, their construction, logical implementation and application. This paper also presents a comparison of the features of different forms of education used in teaching digital techniques, as well as a comparison of these forms, from the point of view of the student and his/her perceptions.
The paper covers the application of Radio Frequency IDentification (RFID) technology in road traffic management with regard to vehicle identification. Various infrastructure configurations for Automated Vehicle Identification (AVI) have been presented, including configurations that can be used in urban traffic as part of the Smart City concept. In order to describe the behavior of multiple identifications of moving vehicles, an operation model of the dynamic identification using RFID is described. While it extends the definition of the correct work zone, this paper introduces the concept of dividing the zone into sections corresponding to so-called inventory rounds. The system state is described using a set of matrices in which unread, read, and lost transponders are recorded in subsequent rounds and sections. A simplified algorithm of the dynamic object identification system was also proposed. The results of the simulations and lab experiments show that the efficiency of mobile object identification is conditioned by the parameters of the communication protocol, the speed of movement, and the number of objects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.