The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is required for cell entry and is the major focus for vaccine development. Here, we combine cryo electron tomography, subtomogram averaging and molecular dynamics simulations to structurally analyze S in situ. Compared to recombinant S, the viral S was more heavily glycosylated and occurred mostly in the closed pre-fusion conformation. We show that the stalk domain of S contains three hinges, giving the head unexpected orientational freedom. We propose that the hinges allow S to scan the host cell surface, shielded from antibodies by an extensive glycan coat. The structure of native S contributes to our understanding of SARS-CoV-2 infection and the development of safe vaccines.
A new theoretical survey of proteins' resistance to constant speed stretching is performed for a set of 17 134 proteins as described by a structure-based model. The proteins selected have no gaps in their structure determination and consist of no more than 250 amino acids. Our previous studies have dealt with 7510 proteins of no more than 150 amino acids. The proteins are ranked according to the strength of the resistance. Most of the predicted top-strength proteins have not yet been studied experimentally. Architectures and folds which are likely to yield large forces are identified. New types of potent force clamps are discovered. They involve disulphide bridges and, in particular, cysteine slipknots. An effective energy parameter of the model is estimated by comparing the theoretical data on characteristic forces to the corresponding experimental values combined with an extrapolation of the theoretical data to the experimental pulling speeds. These studies provide guidance for future experiments on single molecule manipulation and should lead to selection of proteins for applications. A new class of proteins, involving cystein slipknots, is identified as one that is expected to lead to the strongest force clamps known. This class is characterized through molecular dynamics simulations.
The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is required for cell entry and is the major focus for vaccine development. We combine cryo electron tomography, subtomogram averaging and molecular dynamics simulations to structurally analyze S in situ. Compared to recombinant S, the viral S is more heavily glycosylated and occurs predominantly in a closed pre-fusion conformation. We show that the stalk domain of S contains three hinges that give the globular domain unexpected orientational freedom. We propose that the hinges allow S to scan the host cell surface, shielded from antibodies by an extensive glycan coat. The structure of native S contributes to our understanding of SARS-CoV-2 infection and the development of safe vaccines. The large scale tomography data set of SARS-CoV-2 used for this study is therefore sufficient to resolve structural features to below 5 Ångstrom, and is publicly available at EMPIAR-10453.
Polysaccharides (carbohydrates) are key regulators of a large number of cell biological processes. However, precise biochemical or genetic manipulation of these often complex structures is laborious and hampers experimental structure-function studies. Molecular Dynamics (MD) simulations provide a valuable alternative tool to generate and test hypotheses on saccharide function. Yet, currently used MD force fields often overestimate the aggregation propensity of polysaccharides, affecting the usability of those simulations. Here we tested MARTINI, a popular coarse-grained (CG) force field for biological macromolecules, for its ability to accurately represent molecular forces between saccharides. To this end, we calculated a thermodynamic solution property, the second virial coefficient of the osmotic pressure (B). Comparison with light scattering experiments revealed a nonphysical aggregation of a prototypical polysaccharide in MARTINI, pointing at an imbalance of the nonbonded solute-solute, solute-water, and water-water interactions. This finding also applies to smaller oligosaccharides which were all found to aggregate in simulations even at moderate concentrations, well below their solubility limit. Finally, we explored the influence of the Lennard-Jones (LJ) interaction between saccharide molecules and propose a simple scaling of the LJ interaction strength that makes MARTINI more reliable for the simulation of saccharides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.