In this article, the authors, using information-systems modeling techniques, and considering current national legal regulations, present the cloud-enabled architecture of a clinical data repository. The patient’s medical record is an important carrier of information necessary for accurate diagnosis and selection of the correct treatment process. Therefore, it is not surprising that since the beginning of the development of computer technologies, databases have been built to enable the management of a patient’s medical records. These systems were most-often deployed locally at individual healthcare units, which carried certain limitations both in terms of the security and availability of the stored information, and the possibility of exchanging it with other clinics. However, recent developments in the standardization of medical information exchange in Poland, together with the revolution in cloud computing, have opened up completely new perspectives for clinical-data-repository implementations helping to make them far more sustainable. Although, the practical aspects of implementing clinical-documentation repositories are studied both in forums of European countries and also around the world; so far, no similar research was conducted with respect to Poland. This study tries to fill that gap by proposing a flexible multi-variant cloud-enabled architecture of the system providing the services of a clinical-data repository. The goal of the work was to propose such a system architecture that allows having a system that is either cloud-agnostic, that uses specifically selected cloud services, or that is even deployable locally. Thanks to the use of cloud computing services, the implemented system is characterized by high availability, scalability, and the possibility of exchanging data between medical institutions, which enables the improvement in the quality of medical processes for the whole Polish population.
In this paper, the authors, based on a case study of the Polish healthcare IT system being deployed to the cloud, show the possibilities for limiting the computing resources consumption of rarely used services. The architecture of today’s developed application systems is often based on the architectural style of microservices, where individual groups of services are deployed independently of each other. This is also the case with the system under discussion. Most often, the nature of the workload of each group of services is different, which creates some challenges but also provides opportunities to make optimizations in the consumption of computing resources, thus lowering the environmental footprint and at the same time gaining measurable financial benefits. Unlike other scaling methods, such as those based on MDP and reinforcement learning in particular, which focus on system load prediction, in this paper, the authors propose a reactive approach in which any, even unpredictable, change in system load may result in a change (autoscaling) in the number of instances of computing processes so as to adapt the system to the current demand for computing resources as soon as possible. The authors’ main motivation for undertaking the study is to observe the growing interest in implementing FaaS technology in systems deployed to production in many fields, but with relatively little adoption in the healthcare field. Thus, as part of the research conducted here, the authors propose a solution for infrequently used services enabling the so-called scale-to-zero feature using the FaaS model implemented by the Fission tool. This solution is at the same time compatible with the cloud-agnostic approach which in turn helps avoid so-called cloud computing vendor lock-in. Using the example of the system in question, quantitative experimental results showing the savings achieved are presented, proving the justification for this novel implementation in the field of healthcare IT systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.