Kisspeptin and its receptor, GPR54, are major regulators of the hypothalamic-pituitary-gonadal axis as well as regulators of human placentation and tumor metastases. GPR54 is a G(q/11)-coupled G protein-coupled receptor (GPCR), and activation by kisspeptin stimulates phosphatidy linositol 4, 5-biphosphate hydrolysis, Ca(2+) mobilization, arachidonic acid release, and ERK1/2 MAPK phosphorylation. Physiological evidence suggests that GPR54 undergoes agonist-dependent desensitization, but underlying molecular mechanisms are unknown. Furthermore, very little has been reported on the early events that regulate GPR54 signaling. The lack of information in these important areas led to this study. Here we report for the first time on the role of GPCR serine/threonine kinase (GRK)2 and beta-arrestin in regulating GPR54 signaling in human embryonic kidney (HEK) 293 cells, a model cell system for studying the molecular regulation of GPCRs, and genetically modified MDA MB-231 cells, an invasive breast cancer cell line expressing about 75% less beta-arrestin-2 than the control cell line. Our study reveals that in HEK 293 cells, GPR54 is expressed both at the plasma membrane and intracellularly and also that plasma membrane expression is regulated by cytoplasmic tail sequences. We also demonstrate that GPR54 exhibits constitutive activity, internalization, and association with GRK2 and beta- arrestins-1 and 2 through sequences in the second intracellular loop and cytoplasmic tail of the receptor. We also show that GRK2 stimulates the desensitization of GPR54 in HEK 293 cells and that beta-arrestin-2 mediates GPR54 activation of ERK1/2 in MDA-MB-231 cells. The significance of these findings in developing molecular-based therapies for treating certain endocrine-related disorders is discussed.
Kisspeptins (Kp), peptide products of the Kisspeptin-1 (KISS1) gene are endogenous ligands for a G protein-coupled receptor 54 (GPR54). Previous findings have shown that KISS1 acts as a metastasis suppressor in numerous cancers in humans. However, recent studies have demonstrated that an increase in KISS1 and GPR54 expression in human breast tumors correlates with higher tumor grade and metastatic potential. At present, whether or not Kp signaling promotes breast cancer cell invasiveness, required for metastasis and the underlying mechanisms, is unknown. We have found that kisspeptin-10 (Kp-10), the most potent Kp, stimulates the invasion of human breast cancer MDA-MB-231 and Hs578T cells using Matrigel-coated Transwell chamber assays and induces the formation of invasive stellate structures in three-dimensional invasion assays. Furthermore, Kp-10 stimulated an increase in matrix metalloprotease (MMP)-9 activity. We also found that Kp-10 induced the transactivation of epidermal growth factor receptor (EGFR). Knockdown of the GPCR scaffolding protein, β-arrestin 2, inhibited Kp-10-induced EGFR transactivation as well as Kp-10 induced invasion of breast cancer cells via modulation of MMP-9 secretion and activity. Finally, we found that the two receptors associate with each other under basal conditions, and FRET analysis revealed that GPR54 interacts directly with EGFR. The stability of the receptor complex formation was increased upon treatment of cells by Kp-10. Taken together, our findings suggest a novel mechanism by which Kp signaling via GPR54 stimulates breast cancer cell invasiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.