In this paper, thermal diffusivity and heat capacity measurements were performed for three types of barrel steel, 38HMJ (1.8509), 30HN2MFA, and duplex (1.4462). Thermal diffusivity tests as a function of temperature were performed in the range of room temperature (RT) to 500 °C, and specific heat in the range of RT to 1000 °C. All tests were carried out using NETZSCH specialized measuring stands: LFA 467 light flash apparatus and DSC 404 F1 Pegasus differential scanning calorimeter. In the measurements of thermal diffusivity, the reference material Inconel 600 was used. This made it possible to determine thermal conductivity and specific heat as a function of the temperature of barrel steel. The results of specific heat tests of the 38HMJ and the 30HN2MFA steels show a ferrite–austenite phase transition in the 750–810 °C temperature range. This transition was not observed in the duplex steel.
The purpose of this study is to investigate the effect of heat treatments and resulting changes in microstructure on the thermophysical properties of commercial 1.4462 duplex stainless steel. Three types of heat treatment and a raw sample were used. In the first heat treatment, a duplex steel bar was annealed in an air atmosphere furnace for one hour at 1200 °C and then quickly cooled in water (1200 °C + water). The second heat treatment was the same as the first, but afterwards, the bar was annealed in an air atmosphere furnace for 4 h at 800 °C and then slowly cooled down in the furnace to room temperature (1200 °C + water + 800 °C). In the third heat treatment, the duplex steel bar was annealed in the furnace in an air atmosphere for one hour at 900 °C and then slowly cooled in the furnace to room temperature (900 °C). As a result, the weight percentages of ferrite and austenite in the samples achieved the following ratios: 75:25, 65:35 and 44:56. Light microscope examinations (LM), scanning electron microscopy (SEM), Vickers micro-hardness measurements and thermophysical studies using a laser flash apparatus (LFA), differential scanning calorimetry (DSC) and push-rod dilatometry (DIL) were performed to reveal the microstructure and changes in thermophysical properties including thermal diffusivity, thermal conductivity, thermal expansion and specific heat. Along with presenting these data, the paper, in brief, presents the applied investigation procedures.
The results of numerical simulations of transient heat transfer in the barrel wall of a 35 mm caliber cannon for a single shot and the sequences of seven shots and sixty shots for chosen barrel steels are presented. It was assumed that the cannon barrel was made of one of the three types of steel: 38HMJ (1.8509), 30HN2MFA and DUPLEX (1.4462). To model the thermal phenomena in the barrel, the barrel wall material was assumed to be homogeneous and the inner surface of the barrel had no protective chromium or nitride layer. The calculations were made for temperature-dependent thermophysical parameters, i.e., thermal conductivity, specific heat and thermal expansion (in the range from RT up to 1000 °C) of the selected barrel steels. A barrel with a total length of 3150 mm was divided into 6 zones (i = 1, …, 6) and in each of them, the heat flux density was calculated as a function of time q˙i(t) on the inner surface of the barrel. Using lumped parameter methods, an internal ballistic code was developed to compute in each zone the heat transfer coefficient as a function of time hi(t) and bore gas temperature as a function of time Tg(t) to the cannon barrel for given ammunition parameters. A calculation time equaling 100 ms per single shot was assumed. The results of the calculations were obtained using FEM implemented in COMSOL Multiphysics ver. 5.6 software.
Measurements of thermal diffusivity, heat capacity and thermal expansion of X37CrMoV5-1 (1.2343) hot-work tool steel and Maraging 350 (1.6355) steel in the temperature range from −50 °C to 1000 °C were carried out in this paper. Both X37CrMoV5-1 and Maraging 350 are tested for military use as barrel steels. Thermophysical properties were tested using specialised test stands from NETZSCH. Thermal diffusivity was studied using both the LFA 427 laser flash apparatus in the temperature range of RT–1000 °C and the LFA 467 laser flash apparatus in the temperature range of −50 °C–500 °C. Specific heat capacity was investigated using a DSC 404 F1 Pegasus differential scanning calorimeter in the range RT–1000 °C, and thermal expansion was investigated using both a DIL 402 Expedis pushrod dilatometer in the range −50 °C–500 °C and a DIL 402 C in the range RT–1000 °C. Inconel 600 was selected as the reference material during the thermal diffusivity test using LFA467. Tests under the light microscope (LM), scanning electron microscopy (SEM) and Vickers microhardness measurements were carried out to detect changes in the microstructure before and after thermophysical measurements. This paper briefly characterises the research procedures used. In conclusion, the results of testing the thermophysical properties of X37CrMoV5-1 hot-work tool steel and Maraging 350 steel are compared with our results on 38HMJ (1.8509), 30HN2MFA and Duplex (1.4462) barrel steels. The thermophysical properties of X37CrMoV5-1 (1.2343) hot-work tool steel and Maraging 350 (1.6355) steel are incomplete in the literature. The paper presents the thermophysical properties of these steels over a wide range of temperatures so that they can be used as input data for numerical simulations of heat transfer in cannon barrels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.