Water quality information is important for guiding water safety management and preventing water-related diseases. To assess the current status of regulated water quality monitoring in sub-Saharan Africa, we evaluated testing programs for fecal contamination in 72 institutions (water suppliers and public health agencies) across 10 countries. Data were collected through written surveys, in-person interviews, and analysis of microbial water quality testing levels. Though most institutions did not achieve the testing levels specified by applicable standards or World Health Organization (WHO) Guidelines, 85% of institutions had conducted some microbial water testing in the previous year. Institutions were more likely to meet testing targets if they were suppliers (as compared to surveillance agencies), served larger populations, operated in urban settings, and had higher water quality budgets (all p < 0.05). Our results indicate that smaller water providers and rural public health offices will require greater attention and additional resources to achieve regulatory compliance for water quality monitoring in sub-Saharan Africa. The cost-effectiveness of water quality monitoring should be improved by the application of risk-based water management approaches. Efforts to strengthen monitoring capacity should pay greater attention to program sustainability and institutional commitment to water safety.
Universal access to safe drinking water is prioritized in the post-2015 Sustainable Development Goals. Collecting reliable and actionable water quality information in low-resource settings, however, is challenging, and little is known about the correspondence between water quality data collected by local monitoring agencies and global frameworks for water safety. Using 42 926 microbial water quality test results from 32 surveillance agencies and water suppliers in seven sub-Saharan African countries, we determined the degree to which water sources were monitored, how water quality varied by source type, and institutional responses to results. Sixty-four percent of the water samples were collected from piped supplies, although the majority of Africans rely on nonpiped sources. Piped supplies had the lowest levels of fecal indicator bacteria (FIB) compared to any other source type: only 4% of samples of water piped to plots and 2% of samples from water piped to public taps/standpipes were positive for FIB (n = 14 948 and n = 12 278, respectively). Among other types of improved sources, samples from harvested rainwater and boreholes were less often positive for FIB (22%, n = 167 and 31%, n = 3329, respectively) than protected springs or protected dug wells (39%, n = 472 and 65%, n = 505). When data from different settings were aggregated, the FIB levels in different source types broadly reflected the source-type water safety framework used by the Joint Monitoring Programme. However, the insufficient testing of nonpiped sources relative to their use indicates important gaps in current assessments. Our results emphasize the importance of local data collection for water safety management and measurement of progress toward universal safe drinking water access.
BackgroundWater quality testing is critical for guiding water safety management and ensuring public health. In many settings, however, water suppliers and surveillance agencies do not meet regulatory requirements for testing frequencies. This study examines the conditions that promote successful water quality monitoring in Africa, with the goal of providing evidence for strengthening regulated water quality testing programs.Methods and findingsWe compared monitoring programs among 26 regulated water suppliers and surveillance agencies across six African countries. These institutions submitted monthly water quality testing results over 18 months. We also collected qualitative data on the conditions that influenced testing performance via approximately 821 h of semi-structured interviews and observations. Based on our qualitative data, we developed the Water Capacity Rating Diagnostic (WaterCaRD) to establish a scoring framework for evaluating the effects of the following conditions on testing performance: accountability, staffing, program structure, finances, and equipment & services. We summarized the qualitative data into case studies for each of the 26 institutions and then used the case studies to score the institutions against the conditions captured in WaterCaRD. Subsequently, we applied fuzzy-set Qualitative Comparative Analysis (fsQCA) to compare these scores against performance outcomes for water quality testing. We defined the performance outcomes as the proportion of testing Targets Achieved (outcome 1) and Testing Consistency (outcome 2) based on the monthly number of microbial water quality tests conducted by each institution. Our analysis identified motivation & leadership, knowledge, staff retention, and transport as institutional conditions that were necessary for achieving monitoring targets. In addition, equipment, procurement, infrastructure, and enforcement contributed to the pathways that resulted in strong monitoring performance.ConclusionsOur identification of institutional commitment, comprising motivation & leadership, knowledge, and staff retention, as a key driver of monitoring performance was not surprising: in weak regulatory environments, individuals and their motivations take-on greater importance in determining institutional and programmatic outcomes. Nevertheless, efforts to build data collection capacity in low-resource settings largely focus on supply-side interventions: the provision of infrastructure, equipment, and training sessions. Our results indicate that these interventions will continue to have limited long-term impacts and sustainability without complementary strategies for motivating or incentivizing water supply and surveillance agency managers to achieve testing goals. More broadly, our research demonstrates both an experimental approach for diagnosing the systems that underlie service provision and an analytical strategy for identifying appropriate interventions.
Water quality monitoring is important for identifying public health risks and ensuring water safety. However, even when water sources are tested, many institutions struggle to access data for immediate action or long-term decision-making. We analyzed water testing structures among 26 regulated water suppliers and public health surveillance agencies across six African countries and identified four water quality data management typologies. Within each typology, we then analyzed the potential for information and communication technology (ICT) tools to facilitate water quality information flows. A consistent feature of all four typologies was that testing activities occurred in laboratories or offices, not at water sources; therefore, mobile phone-based data management may be most beneficial for institutions that collect data from multiple remote laboratories. We implemented a mobile phone application to facilitate water quality data collection within the national public health agency in Senegal, Service National de l’Hygiène. Our results indicate that using the phones to transmit more than just water quality data will likely improve the effectiveness and sustainability of this type of intervention. We conclude that an assessment of program structure, particularly its data flows, provides a sound starting point for understanding the extent to which ICTs might strengthen water quality monitoring efforts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.